Designing Machine Learning Pipeline Toolkit for AutoML Surrogate Modeling Optimization

Julia Submitted 30 September 2021Published 20 June 2023
Review

Editor: @ (all papers)
Reviewers: @ablaom (all reviews)

Authors

Paulito P. Palmes (0000-0002-3145-6356), Akihiro Kishimoto, Radu Marinescu, Parikshit Ram, Elizabeth Daly

Citation

Palmes et al., (2023). Designing Machine Learning Pipeline Toolkit for AutoML Surrogate Modeling Optimization. JuliaCon Proceedings, 1(1), 129, https://doi.org/10.21105/jcon.00129

@article{Palmes2023, doi = {10.21105/jcon.00129}, url = {https://doi.org/10.21105/jcon.00129}, year = {2023}, publisher = {The Open Journal}, volume = {1}, number = {1}, pages = {129}, author = {Paulito P. Palmes and Akihiro Kishimoto and Radu Marinescu and Parikshit Ram and Elizabeth Daly}, title = {Designing Machine Learning Pipeline Toolkit for AutoML Surrogate Modeling Optimization}, journal = {Proceedings of the JuliaCon Conferences} }
Copy citation string · Copy BibTeX  
Tags

Altmetrics
Markdown badge

 

License

Authors of JCON papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2642-4029