
RangeEnclosures.jl: A framework to bound function ranges
Luca Ferranti1, Marcelo Forets2, and Christian Schilling3

1University of Vaasa, Finland
2Universidad de la República, Uruguay

3Aalborg University, Denmark

ABSTRACT
Computing the range of a function is needed in several applica-
tion domains. During the past decades, several algorithms to com-
pute or approximate the range have been developed, each with
its own merits and limitations. Motivated by this, we introduce
RangeEnclosures.jl, a unified framework to bound the range
of univariate and multivariate functions. In addition to its own al-
gorithms, the package allows to easily integrate third-party algo-
rithms, offering a unified interface that can be used across different
domains and allows to easily benchmark different approaches.

Keywords
range enclosure, rigorous computing, reachability analysis, interval
methods

1. Introduction
Given a function f : D → R over a domain D ⊆ R, the range (or
image) is the set R = {y ∈ R | ∃x ∈ D : f(x) = y}. In practical
applications, we are interested in determining the interval range of
f , i.e., the smallest interval containing R. Unfortunately, comput-
ing the interval range of a multivariate function is NP-hard [9].
For this reason, we practically seek an enclosure E ⊇ R of the
interval range. A standard method to obtain an enclosure is to
evaluate the function with interval arithmetic [10], which how-
ever often produces a wide overestimation due to issues such as
the dependency problem [5] and the wrapping effect [11]. For this
reason, different algorithms have been developed over the past
decades [13], but each comes with its own strengths and weak-
nesses. This is visualized in Fig. 1, where the enclosure obtained
with plain interval arithmetic, called natural enclosure, is compared
to the result of a branch-and-bound algorithm. In general, when
choosing an algorithm to compute a function enclosure, a trade-off
between accuracy and computational efficiency has to be made.
We present RangeEnclosures.jl, a Julia [4] package offering a
unified framework to bound the range of univariate and multivariate
functions. The package comes with built-in solvers but also seam-
lessly integrates solvers defined in third-party libraries. This allows
to easily compare different approaches.

2. A tour through RangeEnclosures
In this section we give a quick overview of the API to bound
function ranges. The package offers several solvers for this pur-
pose, such as natural (interval) enclosure, mean-value form [10],
Moore-Skelboe algorithm [7], branch-and-bound [8] and Taylor

Fig. 1. Two enclosures of f(x) = −
∑5
k=1 kx sin(

k(x−3)
3).

models [3], or polynomial optimization [12]. The full list of im-
plemented solvers can be found in the package documentation1.

2.1 The enclose API
The RangeEnclosures API works through the function enclose.
The basic usage is via enclose(f, D, solver; kwargs...),
where f is the function whose range we want to bound, D is the
domain over which we want to compute the range, solver is the
solver used to compute the range (if no solver is specified, the pack-
age will default to the NaturalEnclosure solver), and kwargs are
possible keyword arguments used by the solver.
In RangeEnclosures, the solver is an instance of a struct that
must be a subtype of AbstractEnclosureAlgorithm. If a user
wants to add a new solver, they just have to add a new struct, say,
MyEnclosure and extend the method enclose, as the following
code snippet demonstrates.� �
import RangeEnclosures : enclose
using IntervalArithmetic : Interval
function enclose (f:: Function ,

D:: Union { Interval , IntervalBox },
solver :: MyEnclosure ; kwargs ...)

solver - specific implementation
end� �
Note that D can be of type Interval for univariate (n = 1) func-
tions or of type IntervalBox for multivariate (n > 1) functions.

1https://juliareach.github.io/RangeEnclosures.jl/

1

https://github.com/JuliaReach/RangeEnclosures.jl
https://juliareach.github.io/RangeEnclosures.jl/

Proceedings of JuliaCon 1(1), 2022

2.2 How to use the package
Below we show Julia code to specify the motivating example from
above as well as to compute a range enclosure. Here we use the
solvers NaturalEnclosure and BranchAndBoundEnclosure.� �
julia > f(x) = - sum (k*x* sin (k*(x-3)/3) for k in 1:5);
julia > D = - 10 . .1 0;
julia > enclose (f, D, NaturalEnclosure ())
[- 150 , 150]
julia > enclose (f, D, BranchAndBoundEnclosure ())
[- 56 .4 232 , 34 .9 988]� �
Combining different solvers. Sometimes there is no “best”
solver, as one solver might give a tighter estimate of the range’s
upper bound and another solver might give a tighter estimate of the
lower bound. In this case, the results can be combined. Consider the
function g(x) = x2− 2x+1 over the domain Dg = [0, 4]. We use
the solvers NaturalEnclosure and the MeanValueEnclosure:� �
julia > g(x) = x�2 - 2*x + 1;
julia > Dg = 0. .4 ;
julia > enclose (g, Dg , NaturalEnclosure ())
[-7, 17]
julia > enclose (g, Dg , MeanValueEnclosure ())
[- 11 , 13]� �
A better enclosure could be obtained by taking the intersection of
the two results. This can be easily done in one command by passing
a vector of solvers to enclose:� �
julia > enclose (g, Dg , [NaturalEnclosure (),

MeanValueEnclosure ()])
[-7, 13]� �
Using solvers based on external libraries. Some of the avail-
able solvers are implemented in external libraries. To keep the start-
up time of RangeEnclosures low, these libraries are not imported
by default. To use the corresponding solver, the library needs to
be manually loaded. For instance, the Moore-Skelboe algorithm is
available upon loading the package IntervalOptimisation.jl.� �
julia > import IntervalOptimisation
julia > enclose (g, Dg , MooreSkelboeEnclosure ())
[-0 .0 0191952 , 9 .0 0109]� �
Multivariate functions. The techniques generalize to multivari-
ate functions. Note that the domain becomes an IntervalBox (in-
stead of an Interval). For example, consider the bivariate func-
tion h(x1, x2) = sin(x1) − cos(x2) − sin(x1) cos(x1) over the
domain Dh = [−5, 5]× [−5, 5]. Fig. 2 visualizes the result.� �
julia > h(x) = sin (x[1]) - cos (x[2]) - sin (x[1]) *
cos (x[1]);
julia > Dh = IntervalBox (-5. .5 , -5. .5);
julia > enclose (h, Dh , BranchAndBoundEnclosure ())
[-2 .7 1068 , 2 .7 1313]� �

Fig. 2. An enclosure of the bivariate function h.

3. Future Applications
We envision applying the package to the domain of reachability
analysis [1, 2]. RangeEnclosures currently only supports functions
with univariate range. To represent multivariate ranges as convex
and non-convex sets, we plan to use LazySets.jl [6].

Acknowledgments
This research was partly supported by DIREC - Digital Research
Centre Denmark and the Villum Investigator Grant S4OS.

4. References
[1] Matthias Althoff, Goran Frehse, and Antoine Girard. Set

propagation techniques for reachability analysis. Annual Re-
view of Control, Robotics, and Autonomous Systems, 4(1),
2021. doi:10.1146/annurev-control-071420-081941.

[2] Matthias Althoff, Dmitry Grebenyuk, and Niklas
Kochdumper. Implementation of Taylor models in CORA
2018. In ARCH, pages 145–173, 2018. doi:10.29007/zzc7.

[3] Luis Benet, Marcelo Forets, David P. Sanders, and Christian
Schilling. TaylorModels.jl: Taylor models in Julia and its ap-
plication to validated solutions of ODEs. In SWIM, 2019.

[4] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B.
Shah. Julia: A fresh approach to numerical computing. SIAM
Rev., 59(1):65–98, 2017. doi:10.1137/141000671.

[5] Luiz Henrique de Figueiredo and Jorge Stolfi.
Affine arithmetic: Concepts and applications.
Numer. Algorithms, 37(1-4):147–158, 2004.
doi:10.1023/B:NUMA.0000049462.70970.b6.

[6] Marcelo Forets and Christian Schilling. LazySets.jl: Scalable
symbolic-numeric set computations. Proceedings of the Julia-
Con Conferences, 1(1):11, 2021. doi:10.21105/jcon.00097.

[7] Eldon Hansen and G William Walster. Global optimization
using interval analysis: revised and expanded, volume 264.
CRC Press, 2003.

[8] Sam Karhbet and Ralph Baker Kearfott. Range bounds of
functions over simplices, for branch and bound algorithms.
Reliab. Comput., 25(7):53–73, 2017.

[9] Vladik Kreinovich. Range estimation is NP-hard for ε2 ac-
curacy and feasible for ε2−δ . Reliab. Comput., 8(6):481–491,
2002. doi:10.1023/A:1021368627321.

[10] Ramon E. Moore, R. Baker Kearfott, and Michael J.
Cloud. Introduction to Interval Analysis. SIAM, 2009.
doi:10.1137/1.9780898717716.

2

https://github.com/JuliaIntervals/IntervalOptimisation.jl
https://github.com/JuliaReach/LazySets.jl
http://dx.doi.org/10.1146/annurev-control-071420-081941
http://dx.doi.org/10.29007/zzc7
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1023/B:NUMA.0000049462.70970.b6
http://dx.doi.org/10.21105/jcon.00097
http://dx.doi.org/10.1023/A:1021368627321
http://dx.doi.org/10.1137/1.9780898717716

Proceedings of JuliaCon 1(1), 2022

[11] Arnold Neumaier. The wrapping effect, ellipsoid arith-
metic, stability and confidence regions. Springer, 1993.
doi:10.1007/978-3-7091-6918-6_14.

[12] Tillmann Weisser, Benoît Legat, Chris Coey, Lea Kapelevich,
and Juan Pablo Vielma. Polynomial and moment optimization
in Julia and JuMP. In JuliaCon, 2019.

[13] Julius Žilinskas and Ian David Lockhart Bogle. A survey of
methods for the estimation ranges of functions using inter-
val arithmetic. In Models and Algorithms for Global Opti-
mization: Essays Dedicated to Antanas Žilinskas on the Oc-
casion of His 60th Birthday, pages 97–108. Springer, 2007.
doi:10.1007/978-0-387-36721-7_6.

3

http://dx.doi.org/10.1007/978-3-7091-6918-6_14
http://dx.doi.org/10.1007/978-0-387-36721-7_6

	Introduction
	A tour through RangeEnclosures
	The enclose API
	How to use the package

	Future Applications
	References

