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ABSTRACT
LazySets.jl is a Julia library that provides ways to symbolically
represent sets of points as geometric shapes, with a special focus
on convex sets and polyhedral approximations. LazySets provides
methods to apply common set operations, convert between differ-
ent set representations, and efficiently compute with sets in high
dimensions using specialized algorithms based on the set types.
LazySets is the core library of JuliaReach, a cutting-edge software
addressing the fundamental problem of reachability analysis: com-
puting the set of states that are reachable by a dynamical system
from all initial states and for all admissible inputs and parameters.
While the library was originally designed for reachability and for-
mal verification, its scope goes beyond such topics. LazySets is an
easy-to-use, general-purpose and scalable library for computations
that mix symbolics and numerics. In this article we showcase the
basic functionality, highlighting some of the key design choices.
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1. Introduction
LazySets.jl is an open-source Julia package for calculus with ge-
ometric sets of points in Euclidean space. For a visual example
applying LazySets, see Fig. 1. (The set representations used there
will be introduced later.) The package provides solutions to rep-
resent sets, perform calculations on them, and combine them via
set operations to form new sets. A key aspect of LazySets is that
set operations can be applied concretely, meaning that a computa-
tion is invoked, or lazily, meaning that the computation is delayed.
Based on geometric concepts, LazySets can evaluate queries on the
lazy set representation, which enables efficient operation in very
high dimensions that is not possible when applying the operations
concretely.
LazySets aims to be a flexible and scalable library. It provides spe-
cialized representations for various common classes of sets and
ways for interacting with these sets, and is able to work with com-
plex set constructs by use of the support-function calculus.1 Flexi-
bility is achieved by implementing generic algorithms that apply to
multiple types of sets, and interoperability is achieved by connect-
ing all set types through common interfaces. Efficiency is achieved
by adding special-case implementations where applicable; set op-

∗Both authors contributed equally.
1Complementary background is included in the Appendix.

Fig. 1: Example of set propagation using LazySets. Starting from a set of
initial conditions represented as a hyperrectangle (on the right) and a given
dynamical system (in this case, the Lotka-Volterra equations), a reachability
algorithm computes a sequence of Taylor models. For plotting, the Taylor
models are overapproximated using zonotopes. It is commonly required to
use different set representations in reachability algorithms.

erations are often binary functions and Julia’s multiple dispatch
greatly simplifies the choice of the most efficient implementation
for a given combination of sets. LazySets is designed to work with
very high-dimensional sets but also provides specialized methods
for one- and two-dimensional sets. Finally, LazySets is well inte-
grated with the Julia ecosystem for scientific computing [7], and ad-
ditional functionality is available upon loading optional packages.
The target audience of LazySets are researchers who use symbolic
and numeric set computations.

In this article we present the basic functionality of LazySets, start-
ing with common sets and operations in Section 2. More advanced
topics on type composition and conversion are introduced in sec-
tions 3 and 4. Several applications are included in Section 5. We
comment on related libraries in Section 6. Installation instructions
can be found in Appendix A. Background mathematical definitions
are included in Appendix B. The code to reproduce the figures can
be found in Appendix C.

2. Basic sets and operations
LazySets offers support for convex and non-convex sets. Intuitively,
a set X is convex if one can draw a straight line segment between
any two points in X without leaving X (see Appendix B.1 for a
formal definition). This explains why optimization over a convex
set is efficient. Convex sets enjoy several other attractive properties,
and many important geometric shapes are convex.
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Table 1. : Set operations available in LazySets. The distinction between lazy and concrete functions is explained in Section 3. The result of
the last three operations is generally not convex even if used with convex operands. For binary operations (marked with ·b) there is also an
n-ary lazy version with the suffix Array , e.g., MinkowskiSumArray . Unicode symbols (as mentioned in the column “Short form”) are

entered in the Julia REPL by typing the LATEX command (e.g.: \oplus for ⊕) followed by pressing the “Tab” key. See Appendix B.2 for
some central definitions.

Operation name Math form Lazy function (constructor) Short form Concrete function

Minkowski sumb X ⊕ Y MinkowskiSum + , \oplus minkowski_sum

Intersectionb X ∩ Y Intersection \cap intersection

Cartesian productb X × Y CartesianProduct * , \times cartesian_product

Convex hullb CH (X ∪ Y ) ConvexHull CH convex_hull

Symmetric interval hull �(X) SymmetricIntervalHull \boxdot symmetric_interval_hull

Linear map AX LinearMap * linear_map

Exponential map eAX ExponentialMap exponential_map

Translation X + b Translation + translate

Affine map AX + b AffineMap * and + affine_map

Reset map xi 7→ c ResetMap -
Inverse linear map A−1X InverseLinearMap -
Bloating X ⊕ {x : ‖x‖ ≤ ε} Bloating -

Unionb X ∪ Y UnionSet \cup -
Complement XC Complement complement

Rectified linear unit xi 7→ max(xi, 0) Rectification rectify

2.1 Constructing sets
Two basic sets are the hyperplane

{x ∈ Rn | aTx = b},

which is parametric in a vector a ∈ Rn and a scalar b ∈ R, and the
half-space (or linear constraint)

{x ∈ Rn | aTx ≤ b},

which consists of all points on one side of the corresponding hy-
perplane. In LazySets these sets are constructed from a and b. For
example, the two-dimensional hyperplane x = 1 (resp. the half-
space x ≤ 1) are:� �

1 julia > a = [1 .0 , 0 .0 ]; b = 1 .0
2
3 julia > Hyperplane (a, b)
4 Hyperplane { Float64 , Vector { Float64 }}([1 .0 , 0 .0 ], 1 .0 )
5
6 julia > HalfSpace (a, b)
7 HalfSpace { Float64 , Vector { Float64 }}([1 .0 , 0 .0 ], 1 .0 )� �

Higher-dimensional sets are defined in a similar fashion; for in-
stance, the 100-dimensional half-space x1 + . . . + x100 ≤ 10 is:2� �

1 julia > a = fill (1 .0 , 100 ); b = 10 .0
2
3 julia > HalfSpace (a, b)
4 HalfSpace ([1 .0 , ..., 1 .0 ], 10 .0 )� �

The most widely used convex sets in various disciplines are (con-
vex) polyhedra, which are characterized as the finite intersec-
tion of half-spaces. This is also known as the H-representation.
For bounded polyhedra, which are called polytope, LazySets also

2Sometimes we abbreviate the output to improve readability.

supports a dual way to represent such sets in V-representation
as the convex hull of points. The functions tohrep(X) and

tovrep(X) can be used to convert between these representations.
Optimization over a polyhedron with linear objective corresponds
to solving a linear program. Linear programs can model a wide
variety of real-life optimization problems and can be solved effi-
ciently [11, 21]. On the left of Fig. 2 we show an example of a
polytope in orange, with seven (linear) constraints, and a half-space
in blue.

LazySets contains many (currently: 26) different structs to repre-
sent common classes of sets (such as half-spaces). These set types
simply expect and store the corresponding parameters that repre-
sent the set. For example, the HalfSpace stores the vector a and
the scalar b . (There are a few exceptions where the constructor
performs normalization by default, e.g., HPolygon , representing
a two-dimensional polytope, sorts the constraints by the vectors a
in counter-clockwise order.) Hence construction is fast and the in-
ternal representation is space efficient. For instance, the BallInf
represents a hypercube specified by the center vector c ∈ Rn and
the radius r ∈ R. In n dimensions, a hypercube has 2n vertices, but
creating an 1,000-dimensional BallInf is instantaneous.� �

1 julia > @time BallInf ( zeros ( 1000 ), 1 .0 )
2 0 .0 00005 seconds (2 allocations : 7 .9 69 KiB )� �

2.2 Extracting information from sets
Being able to represent sets is not useful by itself because we also
want to interact with them. For example, we may want to draw sam-
ples from a set. A general approach to do that is rejection sampling,
which picks a random point x ∈ Rn and checks whether x ∈ X
holds. We can thus use rejection sampling with any set type that
implements a membership test.
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� �
1 julia > ones ( 1000 ) ∈ BallInf ( zeros ( 1000 ), 1 .0 )
2 true� �

Other typical properties that can be checked for sets X and Y are
emptiness (X = ∅; isempty ), inclusion (X ⊆ Y ; issubset ),
and having no point in common (X ∩ Y = ∅; isdisjoint ). The
complexity of such operations depends on the representation of the
set. Take for example a polyhedron represented by the list of its
linear constraints. Emptiness can be checked by formulating a fea-
sibility linear program. Inclusion and disjointness can be checked
using the support function (see Section 3.2).
We may also want to obtain information that is encoded in the set
representation. For example, we can ask for the list of vertices of a
polytope. We have seen that a hypercube is represented by the cen-
ter and the radius, so the vertices need to be computed on demand.� �

1 julia > vertices_list ( BallInf ([1 .0 , 4 .0 ], 1 .0 ))
2 4- element Vector { Vector { Float64 }}:
3 [2 .0 , 5 .0 ]
4 [0 .0 , 5 .0 ]
5 [2 .0 , 3 .0 ]
6 [0 .0 , 3 .0 ]� �

Equality of sets in the mathematical sense can be checked via
isequivalent (which by default checks mutual inclusion):� �

1 julia > X = Interval (-1, 1) × Interval (-1, 1)
2 CartesianProduct { Float64 ,
3 Interval {...}, Interval {...}}(...)
4
5 julia > Y = BallInf ( zeros (2), 1 .0 )
6
7 julia > isequivalent (X, Y)
8 true� �

2.3 Set interfaces
Sometimes the same implementation works for several set types.
LazySets uses a hierarchy of abstract types (which we call in-
terfaces) to summarize common functionalities. For example,
AbstractHyperrectangle is a supertype of all hyperrectangu-

lar set types such as BallInf and provides a default implementa-
tion to compute the volume. When adding a new set type represent-
ing a hyperrectangle, it will automatically use this implementation.
The following list is not exhaustive, but should help as a mental
model of how the library is organized. Definitions are given from
more specific to more general (i.e., less structured).
AbstractHyperrectangle : Hyperrectangular sets can be repre-

sented by a center vector c ∈ Rn and a radius vector r ∈ Rn. Each
x ∈ X can be written as xi = ci + ξiri for i = 1, . . . , n, for some
ξi ∈ [−1, 1]. Implementations include intervals ( Interval ), hy-
percubes ( BallInf ), and the general Hyperrectangle .

AbstractZonotope : Zonotopic sets are those which admit a rep-
resentation given by a center c ∈ Rn and a finite set of generators
gj ∈ Rn, j ∈ 1, . . . ,m, such that x ∈ X is can be written as
x = c+

∑
j ξjgj for some ξj ∈ [−1, 1]. Hyperrectangular sets are

also zonotopic, as well as general zonotopes ( Zonotope ).

AbstractPolyhedron : A set is called polyhedral if it can be ex-
pressed as a finite intersection of half-spaces. Special cases include

hyperrectangular and zonotopic sets, as well as more general poly-
topes ( HPolytope , VPolytope ) and also possibly unbounded
polyhedra ( HPolyhedron ).

LazySet : All convex set types belong to this abstract supertype
to prevent type piracy when extending Base functions. We are
working toward having non-convex sets, such as set unions, in the
same type hierarchy as well.

2.4 Set operations
We have seen that we can interact with sets by checking properties.
Importantly, we can also apply set operations to sets for construct-
ing new sets. (By default the result is a new set instance and the
original set instance is not manipulated.) For details about the com-
plexity for common set representations we refer to [3, Table 1]. For
example, one common set operation is to translate (or shift) every
element in the set by a constant vector.� �

1 julia > B1 = BallInf ([1 .5 , 2 .0 ], 1 .0 )
2 julia > B2 = translate ( B1 , [1 .5 , -1 .0 ])
3 julia > dump ( B2 )
4 BallInf { Float64 , Vector { Float64 }}
5 center : Array { Float64 }((2,)) [3 .0 , 1 .0 ]
6 radius : Float64 1 .0� �

As seen above, a translation usually preserves the set type. For most
operations this is generally not the case. For instance, the intersec-
tion of two half-spaces is itself not a half-space but a polyhedron.� �

1 # intersect {x | x <= 1} and {x | x >= 0}
2 julia > P = intersection ( HalfSpace ([1 .0 ], 1 .0 ),
3 HalfSpace ([-1 .0 ], 0 .0 ))
4 julia > typeof (P)
5 HPolyhedron { Float64 , Vector { Float64 }}� �

For a complete list of the set operations available in LazySets we
refer to Table 1.

3. The LazySets paradigm
Having described how to operate with basic sets, we consider a
more fundamental representation problem. We have seen that there
exist classes of sets. Some of them, such as polyhedra, are closed
under various set operations. That property is convenient because
the type of the result is known in advance. The whole class of con-
vex sets is also closed under the operations described in the upper
part of Table 1, but we can typically not represent the result with
the limited amount of set types in LazySets. This is not a short-
coming of LazySets: you would need infinitely many set represen-
tations for all possible combinations! However, we can resort to a
simple yet powerful trick to effectively represent the result of the
set operations: lazy representation. Going a step further, by making
both basic set types and operations between sets live in the same
abstraction layer (namely always subtyping LazySet irrespective
whether it is a concrete set or the result of an operation) allows to
easily compose set computations.

3.1 Type composition
To give an example, the Minkowski sum of a square and a
disc (two-dimensional balls in the infinity norm and Euclidean
norm) is not representable with a basic type in LazySets. Hence
minkowski_sum will yield an error. But we can apply the lazy
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operation, which is called MinkowskiSum . MinkowskiSum itself
subtypes LazySet . This choice allows for ease of composition.
We wrap the operands in a new object that, by definition, repre-
sents the result of the operation, but without actually performing
the computation. (This also motivates the name of LazySets).

As an illustrative example, suppose that we are interested in the
formula Ω0 = CH (X0,ΦX0 ⊕ Y ), where CH and ⊕ are defined
in Table 1, X0 and Y are sets, and Φ is a matrix defined in Ap-
pendix C.1. Such formulas are prevalent in reachability analysis of
linear initial-value problems, or nonlinear ones after some form of
conservative linearization; see for example [3, 16] and references
therein. Given the sets X0, Y , and the matrix Φ, we can write:� �

1 julia > Ω0 = CH (X0 , Φ*X0 ⊕ Y)� �
Then, Ω0 is a (nested) lazy representation of
the operation just as a normal LazySet . As
such, it can be used for further operations
(conversion, approximation, evaluation). The
structure of the nested operations is internally
represented in the form of a tree, which can
be visualized with TreeView.jl as shown in the
diagram (right).

CH

X ⊕

*

Φ X

Y

Lazy operations can be efficiently evaluated, as we describe next.

3.2 Support-function calculus
A standard approach to operate with compact and convex sets X ∈
Rn is to use the support function [23]. The support function along
direction d ∈ Rn, denoted ρ(d,X), is the maximum of dTx over
all x ∈ X , i.e., the support function describes the (signed) distance
of the supporting hyperplane in direction d from the origin. It can
be used to efficiently find the boundary of a set in a given direction.
The maximizers are called support vectors σ(d,X). Intuitively, the
support vectors are the extreme points of X in direction d. Basic
properties of the support function are given in Appendix B.3.
For various set representations, the support function is known an-
alytically and can be efficiently evaluated numerically. Such cases
include hyperrectangular sets and zonotopic sets. For sets with less
structure, e.g., if X is a polytope in half-space representation, its
support function can be computed by solving a linear program, for
which fast and robust solvers exist. But the main advantage of us-
ing the support function in LazySets lies in the extensive use of
composition rules, as we describe later.

LazySets offers ρ(d, X) (or support_function(d, X) )

to compute the support function ρ(d,X), and σ(d, X) (or
support_vector(d, X) ) to compute (some) support vector
σ(d,X). Fig. 2 (left) illustrates the evaluation of the support func-
tion over the polygon X (orange) along direction (−1, 1)T .� �

1 julia > d = [-1, 1]
2
3 julia > ρ(d, X) # or support_function (d , X)
4 3 .6
5
6 julia > σ(d, X) # or support_vector (d , X)
7 [-3 .0 , 0 .6 ]� �

Consider again the set Ω0 from the previous section. Suppose that
we are interested in the support value of Ω0 along a given direction

Fig. 2: Left: The supporting hyperplane of the set X along direction d. In
red we plot the distance of the hyperplane to the origin, which is given by
ρ(d′,X) where d′ = d/‖d‖. Right: An outer approximation of X using
the eight directions of a regular octagon.

d ∈ R2. Since the support function distributes over the Minkowski
sum, ρ(d,X ⊕ Y ) = ρ(d,X) + ρ(d, Y ) for any pair of sets
X,Y ⊆ Rn, and since it holds that ρ(d,MX) = ρ(MT d,X) for
any matrix M ∈ Rn×n, we can propagate the computation through
the operation tree until a concrete set is found, and in many cases,
an analytic formula is available. That is precisely what LazySets
does, automatically, when we make queries to the lazy set such as
asking for its support function along d = (−1, 1)T from before.� �

1 julia > @btime ρ($d, $Ω0 )
2 117 .2 36 ns (2 allocations : 192 bytes )
3 -0 .8
4
5 julia > @btime ρ($d, concretize ($Ω0 ))
6 23 .7 00 µs ( 203 allocations : 16 .0 3 KiB )
7 -0 .8� �

In the first benchmark we evaluate the support function on the lazy
set.3 In the second benchmark we first convert to a concrete set
representation (in this case a polygon in vertex representation) and
then evaluate the support function. The first case is two orders of
magnitude faster. This exemplifies that set computations can be im-
plemented efficiently using the support function, which becomes
more prominent in higher dimensions.
We note that in the above computation we have only obtained a
bound in direction d, not in other directions. For many applications
it is sufficient to evaluate the support function in only a few direc-
tions. For example, in the helicopter model presented in Section 5.4
we are only interested in the vertical velocity, so we only need to
evaluate the support function twice to obtain the upper and lower
bound in that dimension. Another example is to enclose Ω0 with
a bounded set, for which we can pick a list of template directions
(see Section 4.2).

4. Conversion between set types
LazySets provides ways to convert one set representation to an-
other. If a conversion is not possible due to restrictions in the rep-
resented class of sets, LazySets provides ways to obtain approxi-
mations. Turning to an approximate but simpler set representation
is also interesting for answering questions efficiently that would
otherwise be computationally expensive.

3The Julia macro @btime provided by the BenchmarkTools.jl package
evaluates the given command multiple times and returns the smallest record.
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Fig. 3: Left picture: Overapproximation of the polytope from Fig. 2 (orange)
with a hyperrectangle (blue) and two zonotopes. The zonotope generators
were synthesized from three (red) resp. five (green) polar directions (right).
Observe that the approximations are pairwise incomparable.

4.1 Conversion
LazySets extends Julia’s convert function for converting be-
tween set representations. The first argument is the target type and
the second argument is the source set. Below are three mathemati-
cally equivalent representations of the interval X = [0, 1] ⊆ R:� �

1 julia > X = Interval (0, 1)
2 Interval { Float64 ,
3 IntervalArithmetic . Interval { Float64 }}([0, 1])
4
5 julia > convert ( Hyperrectangle , X)
6 Hyperrectangle { Float64 , Vector { Float64 },
7 Vector { Float64 }}([0 .5 ], [0 .5 ])
8
9 julia > convert ( Zonotope , X)

10 Zonotope { Float64 , Vector { Float64 },
11 Matrix { Float64 }}([0 .5 ], [0 .5 ])� �

There are even more possibilities, such as representing X as an
intersection of half-spaces (try convert(HPolytope, X) ).

With multiple dispatch it is easy to define less obvious conver-
sions, e.g., to convert the Cartesian product of an interval and a
two-dimensional hyperrectangle to a three-dimensional zonotope:� �

1 julia > X = rand ( Interval )
2
3 julia > Y = rand ( Hyperrectangle , dim =2)
4
5 julia > Z = convert ( Zonotope , X × Y)
6 Zonotope { Float64 , ...}
7
8 julia > dim (Z)
9 3� �

4.2 Approximation
In many applications we do not require exact results but are content
with an approximation. To still give mathematical guarantees, one
usually aims for either over- or underapproximations.
We can use the support function to get an overapproximation: For
every nonempty compact convex set X ⊆ Rn and D ⊆ Rn we
have

X ⊆
⋂
d∈D

{dTx ≤ ρ(d,X)}

and equality holds for D = Rn.
LazySets has predefined common template directions such as
OctDirections(2) for directions normal to a regular oc-

tagon in two dimensions. Fig. 2 (right) illustrates the evalua-
tion of overapproximating the set X with octagonal directions,

resulting in a polygon with eight constraints. Apart from com-
mon fixed template directions there are also options for para-
metric uniform directions in two ( PolarDirections ) or three
( SphericalDirections ) dimensions or for a custom set of di-
rections ( CustomDirections ).� �

1 julia > Xoct = overapproximate (X, OctDirections (2))
2
3 julia > length ( constraints_list ( Xoct ))
4 8� �

In two dimensions, LazySets can compute ε-close overapproxima-
tions using a method by Kamenev [20] later refined in [27]. It is
used via overapproximate(X, ε) , where ε is the specified tol-
erance. The higher-dimensional extension is not implemented yet.
On the other hand, a higher-dimensional set can be lazily projected
using the support function to a lower-dimensional subspace, where
the available method applies.

In some applications, we may want to ensure that the result has a
specific set type. The smallest bounding box is available by spec-
ifying the second argument type. It yields a Hyperrectangle ,
which is more efficient to work with.� �

1 julia > overapproximate (X, Hyperrectangle )
2
3 julia > box_approximation (X) # alias� �

We can use overapproximate(P, Zonotope, D) , where P is
a polytope and D is a vector of directions used as candidates for
the generators, to obtain a zonotope (in any dimension). We show
some example overapproximations in Fig. 3. Underapproximations
can be obtained using the function underapproximate .

5. Ecosystem
The Julia language features a rich ecosystem for scientific com-
puting. LazySets uses Requires.jl to add further functionality de-
pending on whether some external packages are loaded. Here we
quickly list various examples, but the list is not exhaustive. From
three-dimensional visualizations to reachability analysis using non-
convex set representations, there is a broad spectrum of features
that are available loading optional dependencies.

Some LazySets functionality prints instructive error messages
when the corresponding packages are not loaded but are required
by the code. For example, the conversion between constraint and
vertex representation of general polytopes in dimension higher than
two requires the optional package Polyhedra.jl:� �

1 julia > X = rand ( VPolytope , dim =4)
2
3 julia > constraints_list (X)
4 ERROR : AssertionError : package ' Polyhedra ' not
5 loaded ( it is required for executing
6 ` default_polyhedra_backend `)
7
8 # fix the error by loading the optional package
9 julia > import Polyhedra

10
11 julia > constraints_list (X)
12 12 - element Vector { HalfSpace { Float64 , ...}}}:
13 ...� �
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Fig. 4: Three-dimensional polyhedron plotted using Makie (left) and a two-
dimensional projection obtained by Polyhedra with CDDLib (right). Edges
of a triangulation of the polyhedron are plotted in dashed lines (red).

5.1 Plotting three-dimensional sets and projections
While writing this article, we received the following question:

We need to plot polyhedra given in a form like this:

2 * x1 >= 0 & 3 * x2 + 1.7 * x3 >= 0

Is there a way to plot a 2D projection with LazySets?

Yes, there is! We replied with the script below. The script nicely
illustrates the interaction of LazySets with the Julia ecosystem.
We use Symbolics.jl for reading the polyhedron in symbolic form,
Polyhedra.jl and CDDLib.jl for projecting the polyhedron, and
Plots.jl to plot the two-dimensional projection.� �

1 using Symbolics
2 import Polyhedra , CDDLib , Plots
3
4 # projected polyhedron from symbolic constraints
5 vars = @variables x1 , x2 , x3 # create symbols
6 P = HPolyhedron ([2* x1 >=0, 3* x2 +1 .7 * x3 >=0], vars )
7 Q = project (P, [2, 3]) # 2D projection ( x2 and x3 )
8
9 Plots . plot (Q) # plot the 2D projection� �

We can also plot the three-dimensional set with Makie.jl. The
Makie plot and the two-dimensional projection are shown in Fig. 4.� �

1 import GLMakie
2
3 # intersection with a bounding box
4 B = BallInf ( zeros (3), 5 .0 )
5 R = intersection (P, B)
6
7 plot3d (R) # plot in three dimensions� �

5.2 Generic numbers and automatic differentiation
LazySets types are parametric in the number type. Hence it is sim-
ple to use custom number types. Besides rationals and arbitrary-
precision floating-point numbers, it is possible to make rigor-
ous floating-point calculations using IntervalArithmetic.jl. More-
over, LazySets features a mechanism to globally tune the nu-
meric tolerances used in floating-point operations. To do so, use
set_atol , set_rtol , and set_ztol (for absolute, relative,

and comparison-with-zero tolerance) respectively. All set functions
have been carefully designed to consistently use the specified tol-
erance and preserve it during operations.

Questions from users, bug reports, and feature requests are avail-
able in the issue tracker. One question we received was from a user
of ForwardDiff.jl, which is a package to compute the gradient:

Fig. 5: Left: Exact conversion of a linear Taylor model (red) to a zonotope
Z (green) against an inexact evaluation H using interval arithmetic (blue,
dashed). Right: Approximate conversion of a non-linear Taylor model (red)
using a zonotope (green).

Using ForwardDiff.jl to get the gradient [...] throws
the following error:
ERROR: default tolerance for numeric
type ForwardDiff.Dual{...} is not
defined

The solution was surprisingly simple: extending the LazySets tol-
erance mechanism to work with dual numbers fixed the error.� �

1 import ForwardDiff
2 import LazySets . default_tolerance
3
4 default_tolerance (:: Type {<: ForwardDiff . Dual }) =

default_tolerance ( Float64 )� �
With this code, the user could use automatic differentiation (AD) in
the formula area(intersection(X, Y)) , which computes the
area of the intersection of sets X and Y . More broadly, AD allows
providing information to numerical methods around computational
geometry, which is often used in robotics and machine learning [13,
4].

5.3 Taylor models as an example of non-convex sets
LazySet is not limited to convex set representations. Apart
from operating with set unions ( UnionSet ), which are
generally non-convex, the library offers functionality to han-
dle intrinsically non-convex set representations. Examples
include star sets ( AbstractStar ), polynomial zonotopes
( PolynomialZonotope ), and Taylor models. The latter repre-
sentation is available in the package TaylorModels.jl [6, 5], which
LazySets interacts with.

Informally, a Taylor model can be thought of as an interval tube
around a polynomial. See for example the red set in Fig. 5. To il-
lustrate, we use LazySets to convert, or evaluate the range, of a
Taylor model (the conversion is formally explained in [28]). It is
easy to operate with Taylor models in LazySets (the definition of
vTM for the linear and nonlinear case is given in Appendix C.4):� �

1 using TaylorModels
2
3 # approximate a vector of Taylor models
4 # with a zonotope
5 Z = overapproximate ( vTM , Zonotope )
6
7 # approximate a vector of Taylor models
8 # with a hyperrectangle
9 H = overapproximate ( vTM , Hyperrectangle )� �
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In the case when the Taylor model is linear, the conversion is exact,
because the zonotope stores linear dependencies between variables.
Hence, as is shown in Fig. 5 (left), the zonotope approximation
( Z ) is better than directly using interval arithmetic to evaluate the
range ( H ), and queries about the zonotope provide quick informa-
tion about the exact set, more accurate than the box approximation.

If the Taylor model contains nonlinear terms, the zonotope pro-
vides only an enclosure but can still be more precise than the box
approximation; a comparison is shown in Fig. 5 (right); we obtain
a more precise approximation of the Taylor model by partitioning
its domain and evaluating each resulting block with a smaller box.

We also mention that LazySets can be combined with an interval-
constraint-programming approach by simply loading the optional
dependency IntervalConstraintProgramming.jl.

5.4 Reachability applications
LazySets is the core library of JuliaReach, a Julia ecosystem to
perform reachability analysis of dynamical systems of the form
ẋ(t) = f(x(t), u(t)). JuliaReach builds on sound scientific ap-
proaches such as [10] and was, in two occasions (2018 and 2020),
the winner of the annual friendly competition on Applied Verifica-
tion for Continuous and Hybrid Systems (ARCH-COMP).4

Reachability techniques are implemented in the JuliaReach pack-
age ReachabilityAnalysis.jl, which uses LazySets at its core for
dealing with sets, including the computation of reachable states.
The union of reachable states for consecutive time intervals is of-
ten called a flowpipe. We include two examples. In Fig. 6, a flow-
pipe for the vertical velocity of an 8-dimensional helicopter model
with a 20-dimensional controller from [31] is shown. The model
has an uncertain initial condition x(0) originating from a set X0,
as well as a non-deterministic input signal u(t) ∈ U (i.e., the input
signal u(t) can vary arbitrarily within the bounds specified by the
set U ). The computation terminates in nearly 50 ms, illustrating the
precision and speed of LazySets. It should be noted that the set of
initial states has 228 corner cases, thus even in the simpler setting
where the inputs are held constant, exhaustive evaluation using sim-
ulations is computationally intractable, since it would require 268
million runs.

As a second example, a three-dimensional flowpipe for the well-
known Lorenz system is shown in Fig. 7. The initial condition is
taken from a flat hyperrectangle of radius 0.1 along the x coor-
dinate. The reachable states are represented using Taylor models,
which are then approximated with zonotopes for further computa-
tions. In this case we have exported the LazySets objects to a VTK
file using the WriteVTK.jl optional dependency, and rendered the
picture with the open-source visualization tool Paraview.

5.5 Parametrization and custom array types
For set types that contain array fields, we use type parameters.
Hence it is possible to instantiate LazySets types with any custom
array. Typically, such special arrays (e.g. dense, sparse, static) are
used in applications that require high performance.

For example, static arrays (where the size of the array can be deter-
mined from the type) are preferable for efficient set computations
with “small” arrays and are available upon loading StaticArrays.jl:

4JuliaReach also participated in the 2021 edition, but the report is not pub-
lished yet.

Fig. 6: Reachable states for the vertical velocity of the helicopter model.
We consider two cases for the input signals u(t): constant and non-
deterministic. Five hundred trajectories drawn randomly from the set of ini-
tial states and with constant inputs are shown on top.

Fig. 7: Zonotope overapproximation of a Taylor-model flowpipe for the
Lorenz equations. The plot is rendered with Paraview.

� �
1 julia > using StaticArrays
2
3 # random ten - dimensional zonotope
4 julia > Z = rand ( Zonotope , dim = 10 , num_generators = 30 )
5
6 # convert to static arrays
7 julia > Zs = Zonotope ( SVector { 10 , Float64 }(Z. center ),
8 SMatrix { 10 , 30 , Float64 }(Z. generators ))
9 julia > d = ones ( 10 )

10 julia > ds = SVector { 10 , Float64 }(d)
11
12 # using normal arrays
13 julia > @btime ρ($d, $Z)
14 145 .2 90 ns (0 allocations : 0 bytes )
15 72 .6 8047192978314
16
17 # using static arrays
18 julia > @btime ρ($ ds , $ Zs )
19 44 .8 99 ns (0 allocations : 0 bytes )
20 72 .6 8047192978314� �

Custom arrays can also be used to express knowledge about the
structure of the set, using only type information. For instance, an
axis-aligned half-space can be defined such that its normal vector
is a LazySets.SingleEntryVector , i.e., a vector with a single
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non-zero element. Then, the concrete intersection with a hyperrect-
angular set can be computed very efficiently:� �

1 # half - space with a normal array
2 julia > @btime intersection ($X, $ Hvec )
3 419 .4 24 µs ( 1799 allocations : 177 .8 3 KiB )
4
5 # half - space with a specialized array
6 julia > @btime intersection ($X, $ Hsev )
7 376 .0 59 ns ( 13 allocations : 1 .0 8 KiB )� �

This example shows that a 100x speedup is obtained by exploiting
structure encoded in the half-space’s type.

5.6 Interoperability with other languages
It is not uncommon that scientists beginning to use Julia are famil-
iar with other languages, specially with the Python programming
language. Below we show how to use pyjulia for working with
LazySets types from Python. We can see that it is not necessary
to use Julia objects everywhere; NumPy arrays can also be used,
making the interoperability between Julia and Python effortless.� �

1 $ python3 -m pip install -- user julia
2
3 $ python3
4
5 >>> import julia
6 >>> julia . install () # only once
7
8 >>> from julia import Base , LazySets
9 >>> from julia . LazySets import BallInf , volume

10
11 >>> B = BallInf ( Base . zeros (3), 1 .0 )
12 >>> volume (B)
13 8 .0
14
15 >>> import numpy as np
16 >>> c = np . array ([0 .0 , 0 .0 , 0 .0 ])
17 >>> B = BallInf (c, 1 .0 )
18 >>> volume (B)
19 8 .0� �

6. Conclusion and Perspectives
We conclude with a brief discussion of the past, present, and future
development perspectives of LazySets.

6.1 Related libraries
There are few publicly available libraries with a similar aim as
LazySets. All these libraries are used in the context of reachabil-
ity analysis. HyPro is a C++ library for concrete representation and
manipulation of sets such as convex polytopes and Taylor mod-
els and also offers a support-function representation of set opera-
tions [29]. CORA is an actively developed Matlab library centered
around zonotopes and contains implementations of zonotope bun-
dles, matrix zonotopes, and polynomial zonotopes [1]. The ellip-
soidal toolbox is a Matlab library for ellipsoids [22]. SpaceEx is
a C++ reachability library that established the use of the support
function in reachability analysis, but it is not open source [18].
Finally, we mention other related Julia packages with a different
aim. As mentioned in Section 5, Polyhedra.jl [25] provides an
interface for polyhedral computations and the double-description
method; hence it complements nicely the lazy features available in
our library. GeometryBasics.jl offers standard geometry types, cre-

ating a basis for graphics/plotting in Julia. The more recent package
Meshes.jl is specialized on efficient and pure-Julia implementations
of computational geometry and meshing algorithms. Another Ju-
lia package for describing domains in Euclidean space is Domain-
Sets.jl; this package is being adopted for modeling PDE (partial dif-
ferential equation) domains with ModelingToolkit.jl. Optimization
is another scientific field where sets play a major role, with great
contributions from Julia developers. MathOptInterface.jl [24] is at
the core of JuMP.jl [12], Julia’s mainstream modeling language for
mathematical optimization. Applications include set programming
in SetProg.jl and set distances in MathOptSetDistances.jl.

6.2 Origin of LazySets and current applications
LazySets has its origins in a tool for reachability analysis of lin-
ear dynamical systems, using a compositional approach based
on reducing high-dimensional lazy set representations into a se-
quence of low-dimensional projections that can be computed effi-
ciently [10]. This method presented the first approach to formally
verify a 10,000-dimensional benchmark from control engineering.
The reachability tool has since been rewritten in ReachabilityAnal-
ysis.jl. A preliminary exposition of these tools appeared in [8].
We have recently applied LazySets to compute reachable states for
linear wave propagation problems and heat transfer problems [14].
The scalability of the approach relies on exploiting the structure of
linear systems through the support-function calculus and lazy eval-
uation. Moreover, linear systems can be embedded in algorithms
to analyze nonlinear systems [17]. Further case studies and com-
parison with other state-of-the-art tools can be found in [2, 19].
LazySets has also been applied to the challenging domain of hybrid
systems (systems with mixed discrete-continuous dynamics) for set
propagation [9] and synthesis [32]. Such problems require switch-
ing between different set representations and handling intersections
efficiently and accurately. Timed systems with non-deterministic
events have been considered in [15]; the approach is able to handle
a large number of sets (100 million sets in zonotope representa-
tion), and it was shown to be an order of magnitude faster than
competing tools [2] such as CORA and SpaceEx.
Besides reachability analysis, LazySets can be used for other pur-
poses. The tool has been adopted in a review article in the context
of propagating sets through neural networks [26], and new tools use
LazySets for verification, e.g., NeuralNetworkAnalysis.jl [28] and
OVERTVerify.jl [30]. Other Julia packages using LazySets func-
tionality include computation of invariant sets in InvariantSets.jl,
ray tracing for geometric optics in OpticSim.jl, astronomical pho-
tometry in Photometry.jl, thin film simulations in Swalbe.jl, and
linear algebra with interval matrices in IntervalLinearAlgebra.jl.

6.3 LazySets in numbers
At the time of writing (LazySets-v1.52.1), the package consists of
125 source files with almost 26k lines of code (LOC), 66 test files
with over 5k LOC, and 66 documentation files (markdown) with
over 4k LOC. It is maintained by the authors of this article5. The
project has received contributions from 13 other people. LazySets
was used in 19 research articles.

6.4 Future work
Set computations often do not allow for typical tricks you would
expect to see in a Julia package. For instance, when working with

5@mforets and @schillic handles on github.com, respectively.
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generic polyhedra, there is very little structure, so most information
cannot be statically inferred and needs to be computed from the
concrete values (such as whether the polyhedron is empty). That
is why there are so many set types: to bring in more structure for
algorithms and dispatch. Another challenge in set computations is
to preserve type stability: in some cases, the output set type cannot
be predicted in advance.
While many algorithms are already optimized, some functions still
use a suboptimal, generic fallback. We are interested to identify
and fix such cases. In our experience, one can often obtain speed-
ups within several orders of magnitude by adding new methods for
Julia’s multiple dispatch, as we exemplified in Section 5.5 for the
intersection of an axis-aligned half-space with a hyperrectangle.
Another direction is the use of trait-based dispatch, which may be
useful as a workaround for limitations of the Julia type system, e.g.,
that it does not allow for multiple inheritance. Expressing proper-
ties of sets that fall outside the established LazySets type hierarchy
would allow for even further flexibility.
Our next aimed milestone is proper support of non-convex set rep-
resentations. While functionality to operate with such set represen-
tations is already available, the interoperability between convex and
non-convex sets has room for improvement.
Finally, LazySets has a solid documentation of its API by an exten-
sive use of docstrings and uses Documenter.jl for its online docu-
mentation. We plan to add more introductory examples and tutori-
als for first-time users.
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APPENDIX

A. How to install LazySets.jl
To use LazySets, first install Julia version v1.3 or higher7. Lazy-
Sets is a registered Julia package, and as such, you can install
it by activating the pkg mode (type ] , and to leave it, type
<backspace> ), followed by� �

1 pkg > add LazySets� �
To load the package in a Julia session, do using , e.g.� �

1 julia > using LazySets
2
3 julia > HalfSpace ([1 .0 , 0 .0 ], 1 .0 )
4 HalfSpace { Float64 , Vector { Float64 }}([1 .0 , 0 .0 ], 1 .0 )� �

The LazySets reference manual is available online at
https://juliareach.github.io/LazySets.jl/dev/.

B. Mathematical definitions
B.1 Compact convex sets
Given a set X ⊆ Rn, its convex hull is defined as

CH (X) = {λ · x+ (1− λ) · y | x, y ∈ X,λ ∈ [0, 1] ⊆ R} .

A setX is convex if it coincides with its convex hull. A set is closed
if it contains all its boundary points. A set X is bounded if there
exists a δ ∈ R such that for all x, y ∈ X it holds that ‖x− y‖ ≤ δ.
A set is compact if it is closed and bounded.

B.2 Set operations
Given two sets X,Y ⊆ Rn, the Minkowski sum is

X ⊕ Y = {x+ y | x ∈ X, y ∈ Y }

The symmetric interval hull ofX is the smallest hyperrectangle that
is centrally symmetric in the origin and contains X .
Maps such as the linear map AX are applied element-wise:

AX = {Ax | x ∈ X}

B.3 Basic properties of support functions
The support function is a basic notion for approximating convex
sets. Let X ⊂ Rn be a compact convex set. The support function
of X is the function defined as

ρ(d,X) := max
x∈X

dTx. (1)

We recall the following elementary properties of the support func-
tion. Let (d1, d2) denote the concatenation of vectors d1 and d2.
For all compact convex sets X,Y in Rn, Z in Rm, all n × n real
matrices M , all scalars λ, and all vectors d, d1 ∈ Rn, d2 ∈ Rm we

7Julia binaries can be downloaded from https://julialang.org/downloads/
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have:

ρ(d,X ⊕ Y ) = ρ(d,X) + ρ(d, Y )

ρ((d1, d2),X × Z) = ρ(d1,X) + ρ(d2, Z)

ρ(d,CH (X ∪ Y )) = max(ρ(d,X), ρ(d, Y ))

ρ(d,MX) = ρ(MT d,X)

ρ(d, λX) = ρ(λd,X)

Properties of the support vector (maximizers of (1)) can be found
on the LazySets online documentation. Analytic formulas for many
important set types are known, allowing for efficient evaluations.
The LazySets docstrings contain mathematical explanations and
references to the relevant literature (see for example ?Zonotope ).

C. Code used in examples
The complete code for all examples can be found in the repository
http://github.com/JuliaReach/LazySets-JuliaCon21. In
this section we comment on some aspects of the code.

C.1 Code for Fig. 3.1
The set X0 is a ball in the infinity norm of radius 0.1 centered in
[1, 0], the setE+ is a hyperrectangle centered in the origin, and Φ is
a 2×2 matrix defined below. In the context of reachability analysis
for linear differential equations [10], the set X0 corresponds to the
initial states, E+ accouts for bloating terms, and Φ = eAδ is the
state-transition matrix for some matrix A and time step δ > 0.� �

1 A = [0 1; -(4π)�2 0]
2 X0 = BallInf ([1 .0 , 0 .0 ], 0 .1 )
3 δ = 0 .0 25
4 Φ = exp (A*δ )
5 2×2 Matrix { Float64 }:
6 0 .9 5105652 0 .0 2459079
7 -3 .8 8322208 0 .9 5105652
8
9 r = [0 .0 5477208 , 0 .0 7676220 ]

10 E+ = Hyperrectangle ( zeros (2), r)
11 Ω0 = CH (X0 , Φ*X0 ⊕ E+)� �

C.2 Code for Fig. 2
In Fig. 2, the set X is a polygon in vertex representation. Such a
VPolygon can be constructed from a vector of points, or simply

a matrix where each column corresponds to the coordinates of a
point. (For higher-dimensional sets in vertex representation the set
type VPolytope is used).� �

1 # two - dimensional polygon in vertex representation
2 X = VPolygon ([-3 -2 0 1 2 0 -0 .8 ;
3 0 .6 -2 -2 -1 1 2 1 .8 ])� �

The supporting half-space of X is computed by evaluation of the
support function along the direction of interest.� �

1 # computing a supporting half - space
2 d = [-1 .0 , 1 .0 ]
3 sf = ρ(d, X)
4 H = HalfSpace (d, sf )� �

C.3 Code for Fig. 3
The set X is the same as in Fig. 2. We overapproximate it with a
box ( Y ) and two zonotopes ( Z and W ).� �

1 Y = box_approximation (X)
2 Z = overapproximate (X, Zonotope , PolarDirections (3))
3 W = overapproximate (X, Zonotope , PolarDirections (5))� �

The third argument to overapproximate here represents a list of
vectors that are used to synthesize the generators of the resulting
zonotope. The type PolarDirections lazily represents vectors
that uniformly cover the unit disc, starting with the vector (1, 0)T .� �

1 collect ( PolarDirections (5))
2 5- element Vector { Vector { Float64 }}:
3 [1 .0 , 0 .0 ]
4 [0 .3 0901699437494745 , 0 .9 510565162951535 ]
5 [-0 .8 090169943749473 , 0 .5 877852522924732 ]
6 [-0 .8 090169943749475 , -0 .5 87785252292473 ]
7 [0 .3 0901699437494723 , -0 .9 510565162951536 ]� �

C.4 Code for Section 5.3
The linear Taylor models are p1(t) = 2 + t and p2(t) = 0.9 + 3t
with remainders I1 = I2 = [−0.5, 0.5] in the domain D = [−3, 1]
and centered at zero. The non-linear case has p1(t) as in the linear
one and p2(t) = 0.9 + 3t + 3t2 with the same remainders and
domain as in the linear case.� �

1 using TaylorModels
2 const IA = IntervalArithmetic
3 const TM1 = TaylorModel1
4
5 I = IA . Interval (-0 .5 , 0 .5 )
6 x0 = IA . Interval (0 .0 )
7 D = IA . Interval (-3 .0 , 1 .0 )
8 p1 = Taylor1 ([2 .0 , 1 .0 ], 2)
9 p2 = Taylor1 ([0 .9 , 3 .0 ], 2)

10
11 # define vector of linear Taylor models
12 vTMlin = [ TM1 ( pi , I, x0 , D) for pi in [ p1 , p2 ]]
13
14 # define vector of non - linear Taylor models
15 p2nl = Taylor1 ([0 .9 , 3 .0 , 3 .0 ], 3)
16 vTMnonlin = [ TM1 ( pi , I, x0 , D) for pi in [ p1 , p2nl ]]� �

C.5 Code for Section 5.5
Special array operations and the type SingleEntryVector are
available in the LazySets submodule LazySets.Arrays . This ex-
ample consists of the concrete intersection of two 10-dimensional
sets, one of them which is unbounded (a half-space).� �

1 const SEV = LazySets . Arrays . SingleEntryVector
2
3 X = Hyperrectangle ( zeros ( 10 ), 2* ones ( 10 ))
4 Hsev = HalfSpace ( SEV (1, 10 , 1 .0 )), 1 .0 )
5 Hvec = HalfSpace ( Vector ( Hsev .a), 1 .0 )� �
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