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ABSTRACT
ReactiveMP.jl is a native Julia implementation of reactive message
passing-based Bayesian inference in probabilistic graphical models
with Factor Graphs. The package does Constrained Bethe Free En-
ergy minimisation and supports both exact and variational Bayesian
inference, provides a convenient syntax for model specification and
allows for extra factorisation and form constraints specification of
the variational family of distributions. In addition, ReactiveMP.jl
includes a large range of standard probabilistic models and can eas-
ily be extended to custom novel nodes and message update rules.
In contrast to non-reactive (imperatively coded) Bayesian infer-
ence packages, ReactiveMP.jl scales easily to support inference on
a standard laptop for large conjugate models with tens of thousands
of variables and millions of nodes.
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1. Background
Bayesian inference is one of the key computational mechanisms
that underlies probabilistic model-based machine learning appli-
cations. Unfortunately, for many practical models, Bayesian infer-
ence requires evaluating high-dimensional integrals that have no
analytical solution. As a result, Probabilistic Programming (PP)
tools for Automated Approximate Bayesian Inference (AABI) be-
come popular, e.g., Turing.jl [3], ForneyLab.jl [2] and others. These
tools help researchers to specify probabilistic models in a high-level
domain-specific language and run AABI algorithms with minimal
additional overhead.

2. Message Passing
An important issue in the development of PP frameworks is scal-
ability of AABI algorithms for large models and large data sets.
One solution approach concerns message passing-based inference
in factor graphs. In this framework, relationships between model
variables are represented by a graph of sparsely connected nodes,
and inference proceeds efficiently by a sequence of nodes send-
ing probabilistic messages to neighboring nodes. While the opti-
mal message passing schedule is data-dependent, as far as the au-
thors are aware all existing factor graph frameworks (e.g., Infer.Net
[4], ForneyLab.jl) use preset message sequence schedules. In our
work we exploit the reactive programming approach in the context

of message passing based Bayesian inference. The potential ben-
efits of reactive message passing in a factor graph include scaling
to large inference tasks, much smaller processing latency and pro-
cessing of data samples that arrive at irregular time intervals.

3. Reactive Message Passing
We present the ReactiveMP.jl package, which is a native Ju-
lia [1] package for automated reactive message passing-based
Bayesian inference and corresponding Constrained Bethe Free En-
ergy (CFBE) functional optimisation [6]. ReactiveMP.jl is based on
a reactive programming approach, does not enforce any particular
message-passing schedule, and supports real-time data inference.
In our experiments this new implementation scales comfortably to
inference tasks on factor graphs with hundreds of thousands of vari-
ables and millions of nodes.
The package comes with a collection of standard probabilistic mod-
els, including linear Gaussian state-space models, hidden Markov
models, auto-regressive models and mixture models. Moreover,
ReactiveMP.jl’s API supports various processing modes such as of-
fline learning, filtering of infinite data streams and protocols for
handling missing data.
The current implementation of ReactiveMP.jl does not run infer-
ence for all models supported by more general-purpose PPLs and is
limited to conjugate state-space models, but it is customizable and
provides an easy way to add new models, node functions and an-
alytical message update rules to the existing platform. As a result,
a user can extend built-in functionality with custom nodes to run
automated inference in novel probabilistic models. The resulting
inference procedures are differentiable with ForwardDiff.jl [5] and
support different types of floating point numbers, e.g., the built-in
BigFloat Julia type. As for computation time and memory usage,
for supported conjugate models, ReactiveMP.jl outperforms Tur-
ing.jl and ForneyLab.jl significantly by orders of magnitude. Per-
formance benchmarks are available at the GitHub repository.

4. Conclusions
Automating scalable Bayesian inference is a key factor in the quest
to apply Bayesian machine learning to useful applications. We de-
veloped ReactiveMP.jl as a package that enables developers to build
large novel probabilistic models and automate scalable inference in
those models by reactive message passing in a factor graph.
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