
UnitTestDesign.jl: Combinatorial design for unit tests
Andrew Dolgert1 and Joseph Wagner1

1Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA

ABSTRACT
Combinatorial interaction testing is an automated way to gener-
ate test cases for unit tests. It’s designed to be a best guess at the
fewest unit tests that will give good decision coverage. This article
discusses when to use this technique, offers a general approach to
using automated test generation for different software testing ap-
plications, and shows how to apply it with the UnitTestDesign
package in the Julia testing ecosystem.

Keywords
combinatorial interaction testing, automated test case generation,
unit testing, Julia

1. Introduction
We would like to think that our unit tests of code match how much
risk we perceived in that code, that they match the components by
which we judge risk: the hazard for failure, the cost of mitigating
failure, and how much a result matters. However, user studies of
the behavior of test authors show that our choices about testing are
ruled by what is convenient within a given testing framework [24].

The first unit tests for a new library often derive from mimicking
how a user might write client code. These happy-path tests are nar-
rative because they tell stories of successful use. As we develop,
we strengthen tests where we see risk in code. For low-level code,
this may mean testing corner cases. For high-level code, it may
mean modifying the code to be easier to test [3]. Once we’ve done
this software engineering, we can ask what tools within our testing
framework can help improve test quality.

Some automated testing tools measure the quality of existing tests.
Others select which tests to run depending on test coverage or re-
cent code modifications. Let’s focus on the first antidote to the
biases inherent in narrative testing, automated generation of test
cases.� �
using UnitTestDesign : all_pairs

@enum Strategy naive keyfitz greville monotonic
arg1 = [1, 4, 8]
arg2 = [:a, :b, :c, :d]
arg3 = [naive , keyfitz , greville , monotonic]
arg4 = [" none ", " RK4 ", " quadrature ", " QUADPACK "]
arg5 = [0 .0 , 9 .3 , -1 .2 , Inf]

test_cases = all_pairs (arg1 , arg2 , arg3 , arg4 , arg5)
for test_case in test_cases :

result = samplefunction (test_case ...)
@assert known_invariant (result , test_case)

end� �

Here, the all_pairs function is a combinatorial interaction test
(CIT) design that uses the sample argument values to choose a set
of 16 test cases out of a total possible 768 test cases. The inputs are
specified as explicit lists of argument values. The name, all-pairs,
means that, if we look at the test cases, and we pick any two ar-
guments, then pick any two values those arguments can take, there
will be at least one test case that includes that pair of arguments.� �
julia > test_cases
16 - element Vector { Vector { Any }}:
[1, :a, naive , " none ", 0 .0]
[4, :a, keyfitz , " RK4 ", 9 .3]
[8, :a, greville , " quadrature ", -1 .2]
[1, :a, monotonic , " QUADPACK ", Inf]
[1, :b, naive , " RK4 ", -1 .2]
[8, :b, keyfitz , " none ", Inf]
[4, :b, greville , " QUADPACK ", 0 .0]
[1, :b, monotonic , " quadrature ", 9 .3]
[4, :c, naive , " quadrature ", Inf]
[1, :c, keyfitz , " QUADPACK ", -1 .2]
[8, :c, greville , " none ", 9 .3]
[8, :c, monotonic , " RK4 ", 0 .0]
[8, :d, naive , " QUADPACK ", 9 .3]
[1, :d, keyfitz , " quadrature ", 0 .0]
[1, :d, greville , " RK4 ", Inf]
[4, :d, monotonic , " none ", -1 .2]� �

For a three-way CIT, we could pick any three arguments and any
three values those arguments can take, and there will be at least one
test case including that triple. In this article, we describe when to
use CIT and how to use CIT within the Julia language’s unit testing
ecosystem. We introduce the UnitTestDesign.jl library which
has several features that make it convenient to use.

—Different levels of coverage, including all-pairs, all-triples, and
higher level coverage.

—Both deterministic and stochastic generators of test cases.

—An option to prime the generation of test cases with a manually-
chosen list.

—The ability to forbid combinations of arguments.

CIT is a popular tool for testing frameworks [8] and one of a few
common strategies for automated test case generation. A random-
ized strategy chooses argument values from the space of allowed
arguments, usually with some bias towards choosing possible cor-
ner cases [16, 1]. Some tools introduce more structure to choosing
random arguments. The QuickCheck(Haskell) and Hypothesis
(Python) packages use customized generators to create streams of
test cases [18]. Concolic testing records the execution of the func-
tion under test in order to generate subsequent test cases that are
likely to increase line coverage [13, 23, 4]. We will compare these

1

https://hackage.haskell.org/package/QuickCheck
https://github.com/HypothesisWorks/hypothesis

Proceedings of JuliaCon 1(1), 2021

methods in Sec. 5, after we understand the scope of combinatorial
interaction testing.

2. Statement of Need
Compared to other techniques for automatic test case generation,
CIT generates fewer tests, choosing them in a way designed to give
good decision coverage [19, 9, 15].

There are two circumstances where this is crucial. The first is that
you have to test a slow function, such as a large, Monte Carlo infer-
ence. If the function under test runs for hours or days, then selective
testing can conserve limited resources.

The other circumstance is when there is a large test space. We’ve
been talking about a function under test, but this is a stand-in for
any test we can parameterize. Let’s say we’ve written an applica-
tion, that we’ve unit tested its important supporting functions, and
we want to write user-level tests that look for problems from in-
teractions among command-line arguments and choices in param-
eter files. This can be equivalent to testing a function with twenty
or more arguments. Twenty arguments, with four possible values
each, would lead to over 1012 ways to call this function.

The CIT in UnitTestDesign takes the time to optimize the choice
of test cases so that they can test the code well. The assumption is
that each if–then in the code will branch depending on interacting
combinations of argument values, so CIT ensures all combinations
of t arguments are tried in at least one test case. Here, t = 2 for two-
way testing, also known as all-pairs testing [8], but studies have
shown that wayness up to t = 6 can be useful [20].

Lastly, there are excellent external CIT tools that define a domain-
specific language for test specification and offer features that im-
prove usability [7, 15]. However, having CIT within the Julia en-
vironment not only makes it easier to import as a library, but also
takes advantage of Julia’s strengths as a language. The simple in-
terface for arguments and forbidden combinations (covered below)
depends on dynamic typing. The speed of the underlying algo-
rithms depends on Julia’s ability to create efficient numerical code.

3. How to Use Combinatorial Interaction Testing
3.1 Outline of the method
While you may already know how to use CIT from the snippet in
the introduction, it can help to think of combinatorial interaction
testing as a set of steps, each of which has choices to make.

(1) Identify the system under test.
(2) Decide how a single test case, consisting of argument values,

should correspond to a unit test.
(3) Address the risk associated with different arguments.
(4) Pick a test generation strategy.
(5) Choose a method for checking the results of each test.

We’ll explore these steps in this section.

3.2 Identify the system under test
We have assumed, thus far, that we are unit testing a function. In
that case, the function has arguments and those arguments can take
on particular values. Our test cases will correspond exactly to an
invocation of the function. However, this need not be the case. The
same idea of interacting choices applies to other test targets:

—Integration test of modules, where a module API produces many
possible ways to call it.

—User-level tests of an application, where there are choices in di-
alog boxes, parameter files, and command-line options.

—Systems outside of Julia, such as the problem of hardware inte-
gration.

3.3 Decide argument values
3.3.1 What arguments represent. We must decide what the argu-
ments represent and must select particular values for those argu-
ments.

It’s rare that a function expects arguments that really take only a few
possible values. We use integers, floating-point, and strings, and a
function argument can be any struct. When we specify tests for CIT,
and we choose a few argument values, they are representatives of
equivalence classes.

An equivalence class is a set of input values that would discover
the same faults in the code. For instance, if a given function fails
for arg3<2.7, then it will fail for arg3=2 as well as arg3=2.5, so
we consider those equivalent with respect to finding faults. You can
choose them by looking at the code or by looking at a specification
for the function, but it’s possible to miss an equivalence class and
miss the faults discovered by that equivalence class.

A weakness of CIT is that your tests are only as good as the argu-
ment values you choose. Even if you choose argument values such
that some combination of them would find a failure, it’s possible
that the subset of test cases generated by the CIT might not include
that combination. There is no guarantee that using automated test-
ing to generate hundreds of tests will find a problem.

One way to defend against our uncertainty about equivalence
classes is to combine combinatorial test generation with random
testing. Decide that each argument value in the CIT specification
represents a generator of values from an equivalence class. Then
each test case, output from CIT, is a list of generators of random
arguments. This introduces bias, and control, into random test se-
lection. It points to treating test case generation as a continuum of
techniques.

There are other creative ways to apply CIT. For instance, if an ap-
plication reads a CSV file, we can use CIT to ensure rows of that
CSV have a wide mixture of column values. This would improve
branch coverage in code that reads the CSV as a data frame. Sim-
ilarly, for module-level testing, arguments could represent choices
about calls to a module’s functions. Here, consecutive arguments
become function calls that are consecutive in time.

3.3.2 Control value choices. Sometimes combinations of func-
tion arguments don’t make sense. Imagine we have a function with
two arguments.� �
arg1 = [" quick ", " complicated "]
arg2 = [0 .0 , 1 .0 , 10 .0]� �
For this example, if the first argument is "quick", imagine that the
function under test requires the second argument to be 0.0. If we
generate all combinations of arg1 and arg2, then some combina-
tions won’t make sense. The domain of the function isn’t merely
the sum of the domains of the arguments.

2

Proceedings of JuliaCon 1(1), 2021

One way to solve this problem is to rewrite the argument list to
have a single argument that reflects only the allowed combinations.
This replaces arg1 and arg2.� �
arg12 = [(" quick ", 0 .0), (" complicated ", 0 .0),

(" complicated ", 1 .0), (" complicated ", 10 .0)]� �
It can be more convenient to tell the CIT algorithm that certain com-
binations are forbidden [20, 10]. Here, the forbid function returns
true when argument values aren’t allowed by the function under
test.� �
forbid (arg1 , arg2) = arg1 == " quick " && arg2 > 0 .0
test_set = full_factorial (

arg1 , arg2 ; disallow = forbid)� �
For testing functions with many arguments, this is simpler to use
than rewriting the argument list.

Sometimes we want to begin with tests that are particular happy
paths. These might be statistically common call signatures, or they
could be pre-specified in design documents as calls that must be
tested. Given that our goal is to minimize resource usage, we should
ensure that any tuples of argument values covered in these initial
calls are included in our list of covered tuples.� �
must_test = [[1, " mid ", 3 .7 , : relax],

[1, " mid ", 4 .9 , : relax]]
test_cases = all_pairs (

[1, 2, 3], [" low ", " mid " ," high "],
[1 .0 , 3 .7 , 4 .9], [: greedy , : relax , : optim];
seeds = must_test
)� �

They are called seed cases and are specified with an explicit option
in UnitTestDesign.

3.4 Address risk
The combinatorial testing approach gives you a lever with which to
address perceived risk in code. You decide the wayness of cover-
age, which is the number of arguments for which all combinations
of argument values must appear. As shown in Table 1, increasing
wayness increases the number of test cases. Pairwise testing has
two-way coverage, but higher wayness can yield some benefit [20].
Literature on how to generate these tests uses the word coverage to
mean two-way, three-way, and so on. The term test coverage usu-
ally refers to which lines of code executed (line coverage), if–then
decision tests (decision coverage), or branches that are executed
during a test (branch coverage).

The two uses of the word coverage are related, because combina-
tions with higher wayness as inputs are designed to lead to more
decision coverage of code during execution. There isn’t enough ev-
idence for this connection for us to choose wayness according to
code’s cyclomatic complexity, and we are counseled against mak-
ing coverage the goal of unit testing [12]. That leaves the test author
to testing as much as you can afford but shifting those tests towards
exercising code that is more complex.

For CIT, that means shifting test cases towards combinations of
those arguments that affect the control flow of risky code. The first
way to increase testing of an argument is to increase the number of

Table 1. Count of test cases from different test generation
strategies.

Total t-way Excursions
Args Vals Combinations Pairs Triples Single Pair
5 4 1024 16 64 16 106
5 8 32768 96 768 36 526
10 4 >106 28 143 31 436
10 8 >109 113 1223 71 2276
40 4 >1024 45 290 121 7141
40 8 >1036 166 2388 281 38501

values for an argument by adding corner cases. The second way is
to increase the wayness of a set of arguments.

For example, if the function under test used an evolutionary algo-
rithm that had several options for the representation of individu-
als, their mutation, and recombination, we might want to test these
choices exhaustively with full-factorial coverage, while selecting
pairwise coverage for other options. This would be done by adding
a wayness argument to the function call.� �
array_of_forty_parameters = fill (1:4, 40)
test_set = all_pairs (

array_of_forty_parameters ...;
wayness = Dict (3 => [[3,4,5,6]])
)� �

Here, an all-pairs coverage of these 40 arguments would lead to
45 test cases, and an all-triples coverage would lead to 290 test
cases, but we increase coverage on only the third through sixth
arguments to a wayness of three, and this increases the total to
64 test cases. It’s unclear whether mixing wayness will always
yield a small set of test cases because mixed-level covering arrays
don’t have well-understood bounds [6], however sample runs show
it does produce fewer test cases than raising coverage on all argu-
ments.

3.5 Pick a test generation strategy
There are a few different strategies for combinatorial test genera-
tion in UnitTestDesign.

The full factorial method generates t-way coverage for t argu-
ments. That is, it generates all combinations of values for all argu-
ments. This is equivalent to what you could create with an t-deep
for-loop.

The excursion method makes a first test case using the first provided
value for each argument. Then, for one-way excursions, it walks
the first argument through all values, keeping the rest of the argu-
ments the same. Then it walks the second argument through all val-
ues, keeping the rest of the arguments the same, and so on. It asks
how the function under test would perform if you were to change
any single argument value. A two-way excursion tries changes to
any two argument values in combination. It produces considerably
more test cases than an all-pairs design, as shown in Table 1.

There are two ways the UnitTestDesign package creates cover-
ing arrays, also known as fractional factorial designs. The default
generator is called IPOG because it is similar to the IPO-G algo-
rithm [17]. It is deterministic, so it produces the same set of test
cases for the same set of inputs. The other generator is called GND,
and it uses a random number generator to search for covering ar-
rays. It returns test cases that obey the same covering properties as

3

Proceedings of JuliaCon 1(1), 2021

the IPOG generator, but it uses a method similar to the AETG gen-
erator [5]. In both cases, the algorithms vary from the published
examples, as discussed in Sec. 4.� �
rng = Random . MersenneTwister (9790375)
slow_and_short = all_triples (parameters ...;

engine = GND (rng = rng , M = 50))� �
The M=50 argument to the GND generator controls the number of
times it guesses each new argument of a test case before it chooses
an optimal value.

3.6 Evaluate results
When a testing suite contains only a few tests of a function, the test
author can usually figure out how to check those few function out-
puts for failures. Automatic generation of test arguments creates a
problem because it isn’t paired with automatic generation of checks
for test failures.

One solution is to create a parallel implementation of the function
under test. It could be an earlier version of the function using a
naïve algorithm. It could be a function that computes the same val-
ues using a different mathematical representation, such as using nu-
merical integration instead of using the result of symbolic integra-
tion. It could be an external implementation, in another language.

It helps to consider the check for failure, not as an assertion about
the result,� �
@assert result == oracle (test_case ...)� �
but as a rule that takes both result and test case into account.� �
@assert invariant (result , test_case ...)� �
For instance, some mathematical calculations solve inverse prob-
lems, so that the result can be fed into a related forward prob-
lem. The test becomes whether it can recover its input values. An-
other test would be whether nearby inputs give continuous outputs.
Lastly, a technique to assert symmetries in function arguments,
when such symmetries exist in the function under test, has been
shown to find faults [22]. For instance, for some function under
test, f , a symmetry test might check that f(a, b)=f(2*a, b/2).

4. Optimization of Test Cases with Practical
Constraints

The UnitTestDesign package expands on the implementation of
two t-way combinatorial interaction testing algorithms. One is the
greedy, non-deterministic algorithm known as AETG [5]. The other
is a deterministic, parameter-choosing algorithm called IPO-G [17].
While these algorithms have different structure, we were able to
add features to them using similar basic moves.

In order to support a feature where the test author can require cer-
tain pre-defined test cases, we add those test cases to the list of
tuples to be covered, where a tuple is a combination of argument
values. We just put that into the list and let the algorithms take care
of covering it.

In order to support multi-level wayness in coverage, we use mul-
tiple rounds of algorithms designed for single wayness, starting at
the highest wayness. For example, given a pairwise test generation
strategy that requests all-triples over a set of five arguments, we first
generate test cases that cover the all-triples and then present these
as initial seed values to the all-pairs calculation.

In order to avoid forbidden combinations of arguments, we check
the validity of the next possible argument at every moment in the
algorithm that a next argument is chosen. This sometimes means
that a test case being created could be thrown out and started new
from a different seed argument value. This is a situation where it
might help to use the Z3 theorem prover to reduce the need for
retries, as some packages have done [19].

Like many greedy algorithms, these can be sensitive to small, some-
times unspecified, choices in implementation. We found that a suc-
cessful strategy for designing these algorithms is to generate an
ensemble of variants and test them against sample inputs.

For example, there is a common moment in these algorithms where
a putative test case, partially specified, is matched against a cover-
age tuple, which will have t specified argument values for t-way
coverage. Given just one argument from the test case and one argu-
ment from the tuple, there are five ways they can compare.

comparison test case tuple
ignores * *

skips a *
misses * b

matches a b = a
mismatches a b 6= a

Only the last comparison is clearly a mismatch. If we compare mul-
tiple arguments of the test case and tuple, we can quantify that com-
parison as having zero or more “ignores,” zero or more “skips,”
and so-on. This means there are 24 − 1 ways that a non-zero test
case and tuple can compare, even if they have no mismatches. The
UnitTestDesign library has tuned its search for test cases by op-
timizing across these matching algorithms.

There are plenty of improvements to make to these algorithms, such
as the use of advanced data structures [21] or more adaptive opti-
mization techniques like simulated annealing [20]. There are also
completely different greedy algorithms [2, 14]. Any of these would
be welcome to serve some use case if they can remain convenient
to use within the testing framework.

5. Comparison of Approaches
Now that we’ve explored combinatorial interaction testing, let’s re-
turn to place it in the context of other similar testing techniques.
Compared to other methods for automated test case generation, CIT
makes fewer tests, with some wayness guarantees.

Random testing also generates test cases, and we know, from Ar-
curi et al, that these test cases increase code coverage with increas-
ing numbers of test cases in a predictable way [1]. Random testing
has the benefit that you can run it for an arbitrarily long time dur-
ing acceptance testing. There is also no requirement that values be
completely random within the domain of arguments. They are al-
most always biased towards values that carry risk, such as empty
strings or other corner cases. Combinatorial interaction testing is
preferable to random testing when there are few test-running re-
sources.

4

Proceedings of JuliaCon 1(1), 2021

There are also more mathematical test generation methods, such as
orthogonal arrays or Sobol sequences [11]. These give an even dis-
tribution of values within high-dimensional spaces. They would be
excellent to, for instance, seed an optimization problem with local
minima, but they aren’t designed to explore the space of execution
paths of code in the way that CIT is.

There are also powerful testing methods that combine automated
generation of test inputs with observation of test execution and
outputs. For tests that run reasonably quickly, these strategies can
shorten the time to find faults in the code, even if they don’t shorten
the length of a particular test run.

Property-based testing, for instance, offers a specification to de-
scribe the domain of each argument, or sets of arguments, so that
the test author can focus on the domain of the function instead of
the exact test suite. Tools of this kind can watch for failed tests,
and then they can simplify the test arguments while checking for
failure, in order to find the simplest test that fails. This is extraor-
dinarily useful for fault-finding but, again, will use more testing
resources than CIT in the absence of failures [18].

Concolic testing performs the remarkable feat of executing a test
case and recording that execution in order to learn which argument
values control choices at each decision in the code. Then the con-
colic algorithm chooses a different argument value and tries the
test again. This is an automated way to learn corner cases in the
code, which should help with the challenge of deciding equivalence
classes for arguments. At the same time, concolic testing gener-
ally uses logic solvers to decide equivalence classes, and these can
be idiosyncratic for mathematical code [13, 23]. The hardest part
about concolic testing may be running it, conveniently, within the
unit testing framework.

All of these approaches to automated test generation create more
tests with less code than manual alternatives. This makes a test
suite less brittle as the code-under-test is modified. It can also cre-
ate test suites with a reassuring number of test cases, but none of
the automated techniques above remove risk. We still need to rely
on software engineering techniques, such as tracking of historical
bug report rates, in order to understand the maturity of a code base.

6. Conclusion
Combinatorial interaction testing is an advanced technique because
it’s tailored to a difficult situation, when you can’t afford not to
spend the time to make your best guess at test cases. However, this
kind of automation is easy to specify and run in Julia’s ecosystem.
The most difficult part of the transition to automated test case gen-
eration is shifting from manually-computed checks of test results to
checks that work for any combination of arguments, as described
in Sec. 3.6. A lot of the strategies in Sec. 3 apply to any kind of au-
tomated test case generation. They point to the broad applicability
of automation for testing and to the effectiveness of tools that offer
control to the test author.

7. References
[1] A Arcuri, M Z Iqbal, and L Briand. Random testing:

Theoretical results and practical implications. IEEE
Trans. Software Eng., 38(2):258–277, March 2012.
doi:10.1109/TSE.2011.121.

[2] Andrea Calvagna and Angelo Gargantini. T-wise combinato-
rial interaction test suites construction based on coverage in-
heritance: combinatorial test suites by coverage inheritance.

Softw. Test. Verif. Reliab., 22(7):507–526, November 2012.
doi:10.1002/stvr.466.

[3] Vishal Chowdhary. Practicing testability in the real world.
In 2009 International Conference on Software Testing
Verification and Validation, pages 260–268. IEEE, 2009.
doi:10.1109/ICST.2009.53.

[4] Valentin Churavy. Concolicfuzzer. https://github.com/
vchuravy/ConcolicFuzzer.jl, 2019.

[5] David M Cohen, Siddhartha R Dalal, Michael L Fred-
man, and Gardner C Patton. The AETG system: An ap-
proach to testing based on combinatorial design. IEEE
Transactions on Software Engineering, 23(7):437–444, 1997.
doi:10.1109/32.605761.

[6] Myra B Cohen, Peter B Gibbons, Warwick B Mugridge,
and Charles J Colbourn. Constructing test suites for in-
teraction testing. In Proceedings of the 25th International
Conference on Software Engineering, ICSE ’03, pages 38–
48, Washington, DC, USA, 2003. IEEE Computer Society.
doi:10.1109/ICSE.2003.1201186.

[7] Jacek Czerwonka. Pairwise testing in real world: Practical
extensions to test case generators. In 24th Pacific Northwest
Software Quality Conference, volume 200, 2006.

[8] Jacek Czerwonka. Pairwise testing: Combinatorial test
case generation. https://jaccz.github.io/pairwise/,
2021.

[9] Mats Grindal, Jeff Offutt, and Sten F Andler. Combina-
tion testing strategies: a survey. Softw. Test. Verif. Reliab.,
15(3):167–199, September 2005. doi:10.1002/stvr.319.

[10] Mats Grindal, Jeff Offutt, and Jonas Mellin. Handling con-
straints in the input space when using combination strategies
for software testing. Technical Report HS-IKI-TR-06-001,
School of Humanities and Informatics, University of Skövde,
2006.

[11] Yuanzhen He and Boxin Tang. Strong orthogonal
arrays and associated latin hypercubes for com-
puter experiments. Biometrika, 100(1):254–260, 2013.
doi:10.1093/biomet/ass065.

[12] Laura Inozemtseva and Reid Holmes. Coverage is not
strongly correlated with test suite effectiveness. In Proceed-
ings of the 36th International Conference on Software Engi-
neering, ICSE 2014, pages 435–445, New York, NY, USA,
May 2014. doi:10.1145/2568225.2568271.

[13] James C King. Symbolic execution and program test-
ing. Communications of the ACM, 19(7):385–394, 1976.
doi:10.1145/360248.360252.

[14] Ugur Koc and Cemal Yilmaz. Approaches for computing
test-case-aware covering arrays. Softw. Test. Verif. Reliab.,
28:e1689, November 2018. doi:10.1002/stvr.1689.

[15] D R Kuhn, R N Kacker, and Y Lei. Practical combinatorial
testing. Technical Report 800-142, National Institute of Stan-
dards and Technology, U.S. Department of Commerce, 2010.
doi:10.6028/NIST.SP.800-142.

[16] Leonidas Lampropoulos, Benjamin C Pierce, Li-Yao Xia,
Diane Gallois-Wong, Cătălin Hriţcu, and John Hughes.
Luck: A probabilistic language for testing. In Gilles Barthe,
Joost-Pieter Katoen, and Alexandra Silva, editors, Founda-
tions of Probabilistic Programming, pages 449–487. 2020.
doi:10.1017/9781108770750.014.

[17] Yu Lei, Raghu Kacker, D Richard Kuhn, Vadim Okun, and
James Lawrence. IPOG/IPOG-D: efficient test generation for

5

http://dx.doi.org/10.1109/TSE.2011.121
http://dx.doi.org/10.1002/stvr.466
http://dx.doi.org/10.1109/ICST.2009.53
https://github.com/vchuravy/ConcolicFuzzer.jl
https://github.com/vchuravy/ConcolicFuzzer.jl
http://dx.doi.org/10.1109/32.605761
http://dx.doi.org/10.1109/ICSE.2003.1201186
https://jaccz.github.io/pairwise/
http://dx.doi.org/10.1002/stvr.319
http://dx.doi.org/10.1093/biomet/ass065
http://dx.doi.org/10.1145/2568225.2568271
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1002/stvr.1689
http://dx.doi.org/10.6028/NIST.SP.800-142
http://dx.doi.org/10.1017/9781108770750.014

Proceedings of JuliaCon 1(1), 2021

multi-way combinatorial testing. Softw. Test. Verif. Reliab.,
18(3):125–148, September 2008. doi:10.1002/stvr.381.

[18] Andreas Löscher and Konstantinos Sagonas. Automating tar-
geted property-based testing. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation
(ICST), pages 70–80, 2018. doi:10.1109/ICST.2018.00017.

[19] Changhai Nie and Hareton Leung. A survey of combinatorial
testing. ACM Computing Surveys (CSUR), 43(2):11, January
2011. doi:10.1145/1883612.1883618.

[20] J Petke, M B Cohen, M Harman, and S Yoo. Practi-
cal combinatorial interaction testing: Empirical find-
ings on efficiency and early fault detection. IEEE
Trans. Software Eng., 41(9):901–924, September 2015.
doi:10.1109/TSE.2015.2421279.

[21] Itai Segall, Rachel Tzoref-Brill, and Eitan Farchi. Us-
ing binary decision diagrams for combinatorial test de-
sign. In Proceedings of the 2011 International Symposium
on Software Testing and Analysis, pages 254–264, 2011.
doi:10.1145/2001420.2001451.

[22] S Segura, G Fraser, A B Sanchez, and A Ruiz-
Cortés. A survey on metamorphic testing. IEEE
Trans. Software Eng., 42(9):805–824, September 2016.
doi:10.1109/TSE.2016.2532875.

[23] Xinyu Wang, Sun Zhenbang, Chen Jun, Peixin Zhang, Jingyi
Wang, and Yun Lin. Towards optimal concolic testing. In
2018 ACM/IEEE 40th International Conference on Software
Engineering, pages 291–302, New York, NY, USA, 2018.
doi:10.1145/3180155.3180177.

[24] Kristian Wiklund, Sigrid Eldh, Daniel Sundmark, and
Kristina Lundqvist. Impediments for software test automa-
tion: A systematic literature review. Softw. Test. Verif. Reliab.,
27(8):e1639, December 2017. doi:10.1002/stvr.1639.

6

http://dx.doi.org/10.1002/stvr.381
http://dx.doi.org/10.1109/ICST.2018.00017
http://dx.doi.org/10.1145/1883612.1883618
http://dx.doi.org/10.1109/TSE.2015.2421279
http://dx.doi.org/10.1145/2001420.2001451
http://dx.doi.org/10.1109/TSE.2016.2532875
http://dx.doi.org/10.1145/3180155.3180177
http://dx.doi.org/10.1002/stvr.1639

	Introduction
	Statement of Need
	How to Use Combinatorial Interaction Testing
	Outline of the method
	Identify the system under test
	Decide argument values
	What arguments represent
	Control value choices

	Address risk
	Pick a test generation strategy
	Evaluate results

	Optimization of Test Cases with Practical Constraints
	Comparison of Approaches
	Conclusion
	References

