
Causal.jl:
A Modeling and Simulation Framework for Causal Models

Zekeriya Sarı1 and Serkan Günel1

1Deparment of Electrical and Electronics Engineering, Dokuz Eylül University, İzmir, TURKEY

ABSTRACT
This paper introduces a modeling and simulation framework,
Causal.jl, that enables fast and effective system simulations and
online and offline data analyzes. Causal.jl adopts a causal model-
ing approach in which a model consists of components that pro-
cess data and the connections that transfer the data flowing be-
tween these components. The framework developed makes it pos-
sible to simulate discrete time or continuous time, static or dy-
namical systems. In particular, it is possible to simulate dynamical
systems modeled by various types of equations such as the ordi-
nary, random ordinary, stochastic, delayed differential, differential-
algebraic equations, and discrete-time difference equations. Dur-
ing the simulation, the data flowing through the connections can
be processed online and offline, and specialized analyzes can be
performed. These analyzes can also be enriched with plugins that
can be easily defined using the standard Julia library or various Ju-
lia packages. The simulation is performed by evolving the model
components between sampling time intervals individually and in
parallel. The independent evolution of the components allows the
simulation of the models consisting of the components represented
by different mathematical equations, while the parallel evolution of
components increases the simulation performance.

Keywords
System Modeling, Causal Modeling, System Simulation, Dynami-
cal Systems, Julia Programming Language

1. Introduction
Numerical simulations can be expressed as solving the mathemat-
ical equations derived from modeling physical systems. Based on
the system’s properties at hand and abstraction level in the mod-
eling, mathematical equations may be ordinary, stochastic, delay
differential, or difference equations. High-speed performance and
the ability to offer useful analysis tools are other typical features
expected from an effective simulation environment.
Many simulation environments are available for numerical analy-
sis of systems [5, 8, 9, 12–14, 18, 20]. They are capable of allowing
simulations that are represented by ordinary differential equations
and differential algebraic equations, mostly. This is restrictive given
the variety of mathematical equations that can be derived from the
modeling [16]. Besides, many of the existing simulation environ-
ments lack modern computational methods such as parallel com-
puting.
In this study, Causal.jl, a modeling and simulation framework for
causal models, is introduced [1]. The aim is to model large scale

complex system networks easily and to provide fast and effective
simulations. For this purpose, Julia, an open-source, high level,
general purpose dynamical programming language designed for
high-performance numerical analysis and computational science,
has been used. Although Julia is a dynamical language, owing to its
Just-in-Time (JIT) compiler developed on Low Level Virtual Ma-
chine (LLVM), it can reach the high-speed performance of static
languages such as C [3, 7]. It supports various parallel computing
techniques at thread and process levels. In addition to Julia’s stan-
dard library, numerous specialized packages developed for different
fields such as data science, scientific computing, are also available.
Julia’s high-speed performance and parallel computing support are
essential in meeting the need to design a fast and effective simula-
tion environment. Julia’s syntax can be enlarged purposefully using
its metaprogramming support. The analyzes scope of the simulation
framework can be extended with new plugins that can be easily de-
fined. It is possible to analyze discrete or continuous-time, static,
or dynamical systems. In particular, it is possible to simulate dy-
namical systems modeled by ordinary, random ordinary, stochas-
tic, delay differential, differential-algebraic, and/or discrete differ-
ence equations simultaneously. Unlike its counterparts, the models
do not evolve at once for the whole simulation duration. Instead,
the model components evolve between sampling time intervals in-
dividually. While individual evolution of the components enables
the simulation of systems consisting of components represented by
different mathematical models, parallel evolution of components
increases the simulation performance.

2. Modeling and Simulation
2.1 Modeling
Causal.jl adopts causal modeling1 approach in modeling systems.
In causal modeling approach, a model consists of components and
connections (Figure 1) [11]. The simulation of the model is per-
formed in a clocked environment. That is, the model is not simu-
lated in one shot by solving a single mathematical equation sys-
tem that represents the whole model, but instead, it is simulated by
evolving the components between sampling intervals in parallel,
individually.
The components interact with each other through the connections
that are bound to their input/output ports. The components are data
processing agents, and their behavior determines how the data is
processed. Depending upon the nature of the system and the mod-
eling, these equations may differ, i.e., they may or may not contain

1Causal modeling is also known as signal flow modeling or block diagram
modeling

1



Proceedings of JuliaCon 1(1), 2019

B1

TB2

T

B3

TB4

T

B5

T

L1

L2

L3

L4

L6 L5

T
model

Fig. 1: A model consisting of the components B1, . . ., B5 and the connec-
tions L1, . . ., L6. T is the common time reference of the model.

derivative terms, or they may contain the continuous or discrete-
time variable, etc. The dataflow through the connections is unidi-
rectional, i.e., a component is driven by other components that write
data to its input port.
The model simulation is performed by evolving the components in-
dividually. A reference clock is used to make the components have
a common time base. The clock generates pulses at simulation sam-
pling intervals. These pulses are used to trigger the components
during the run stage of the simulation. Each triggered component
reads its input data from its input port, calculates its output accord-
ing to its mathematical model, and writes the result to its output
port.

2.2 Components
The component types in Causal.jl are shown in Figure 2. The com-
ponents can be classified as sources, sinks, and systems.
The sources are the components that generate outputs as functions
of time only. When triggered, a source computes its output accord-
ing to its readout function and writes the result to its output port.
The sources do not have input ports.
The sinks are data processing units. Their primary goal is to pro-
cess the data flowing through the connections online. When trig-
gered, a sink reads its input data from its input port and processes
it. The data can be visualized by being plotted on a graphical user
interface, can be observed by being printed on a console, or can be
recorded in data files. The sinks’ data processing scope can be en-
riched by integrating new plugins that can be developed using the
standard Julia library or various available Julia packages. Invari-
ants, spectral properties, or statistical information can be extracted
from the data. Parameter estimation can be performed, or various
signal processing techniques can be applied. Causal.jl has been de-
signed to be flexible enough to allow the users to extend its data
analyzes scope by integrating newly-defined plugins.
A static system is described by a readout equation solely. When
triggered, a static system reads its input data from its input port, cal-
culates its output according to its readout function, and writes the
result to its output port. In dynamic systems, however, the system
behavior is characterized by the states. The output of a dynamical
system depends on its input, previous state(s), and time. Therefore,
a dynamical system is described by a differential equation and a
readout equation, classically. When triggered, a dynamical system
reads its input from its input port, updates its state according to the
differential equation, calculates its output according to its readout
function, and writes the result to its output port. Being developed
on top of DifferentialEquations.jl, Causal.jl is capable of simulat-
ing the dynamical systems represented by differential equations in
the form of the ordinary differential equations (ODE), differential-

Source

t
y = g(t)

Sink

t

StaticSystem

t

y = g(u, t)

DiscreteSistem

k
xk+1 = f (xk, uk, k)
yk = g(xk, uk, k)

ODESystem

t
ẋ = f (x, u, t)
y = g(x, u, t)

DAESystem

t
0 = f (dx, x, u, t)
y = g(x, u, t)

RODESystem

t
dx = f (x, u, t,Wt)dt
y = g(x, u, t)

SDESystem

t
dx = f (x, u, t)dt + h(x, u, t)dWt

y = g(x, u, t)

DDESystem

t
ẋ = f (x, xτ , u, t)
y = g(x, u, t)

y

y

y

y

y

y

y

y u

u

u

u

u

u

u

u

Fig. 2: Component types in Causal.jl. u, x, y signify the input, state, output
of a system, respectively. t and k are continuous and discrete time variable,
respectively.W is the stochastic process corresponding to the noise and xτ
is the state x delayed by τ seconds in time. f (and h) is the right-hand-side
function of the differential equation representing the system and g is the
readout function.

algebraic equations (DAE), random ordinary differential equations
(RODE), stochastic differential equations (SDE), delay differen-
tial equations (DDE) or discrete difference equations [16]. Most
of the available simulation environments allow the systems repre-
sented by ordinary differential equations or differential-algebraic
equations [5, 8, 9, 12–14, 18, 20]. Therefore, analyzes such as noise
or delay analysis or unexpected change of system parameters can-
not be performed in these simulation environments, easily. On the
contrary, Causal.jl makes it possible for all these analyses to be per-
formed owing to its ability to solve such a wide range of differential
equations.

2.3 Ports and Connections
A port is a bunch of pins to which the connections are bound. There
are two types of pins: an output pin that transfers data from the in-
side of the component to its outside, and an input pin that transfers
data from the outside of the component to its inside. There are two
types of ports: an output port that consists of output pins and an
input port that consists of input pins.
The data transferred to a port are transferred to its connections. The
data transfer through the connections is performed over the links of
the connections. The links are built on top of unbuffered Julia chan-
nels. The data written to (read from) a link is written to (read from)
its channel. Running Julia tasks bound to the channels must exist
for the data to flow through these channels. Julia tasks are the con-
trol flow features that allow calculations to be flexibly suspended
and maintained without directly communicating the task scheduler
of the operating system [3]. The communication and the data ex-
change between the tasks are carried out through Julia’s channels
to which they are bound.
In the modeling approach adopted, the components reading data
from a connection are driven by other components writing data to
the connection. Therefore, all of the model’s connections must be
readable and writable so that data can flow through the connections.
This necessitates that all the connections of the model must be con-
nected to a component from both ends. Otherwise, the simulation
gets stuck and does not terminate.
There exist other tools developed in Julia for parallel execution of
computations. Dagger.jl is such an example of those tools [6]. Dag-
ger.jl distributes the computations that can be represented by a di-

2



Proceedings of JuliaCon 1(1), 2019

Start Inspection Initialization Run Termination

S
u
it
a
b
le

F
o
r

S
im

u
la
ti
o
n

Unsuitable For
Simulation

Fig. 3: Flowchart of the simulation stages.

Static
System

t

Dynamical
System I

t

Dynamical
System II

t

(a)

Static
System

t

Dynamical
System I

t

Dynamical
System II

t

Memory

t

(b)
Fig. 4: (a) An algebraic loop consisting of the components Static System,
Dynamical System I and Dynamical System II. (b) Breaking of the loop
with a Memory component.

rected acyclic graph (DAG) to available worker processes to exe-
cute them in parallel. A DAG is a directed graph with no directed
cycles (loops). The DAG modeling approach brings restrictions to
the simulation of the models that include loops, which is a case
commonly encountered e.g. in feedback control systems. However,
Causal.jl is capable of simulating the systems that include loops in
their models.

2.4 Simulation
A model to be simulated consists of components connected to each
other and a time reference. The time reference is used to sample
the continuous-time signals flowing through the model’s connec-
tions and trigger the components. The simulation is performed by
triggering the components with pulses generated by the time refer-
ence of the model at sampling time instants. When triggered, the
components evolve to compute their outputs.
The simulation stages are shown in Figure 3 basically. Performing,
inspecting, and reporting all the simulation stages is carried out
automatically without requiring any user intervention.
In the inspection stage, the model is inspected to see whether the
model is suitable for simulation. If connections having any un-
connected terminals are detected, the simulation is terminated at
this stage. The model is not suitable for simulation when algebraic
loops exist [10]. An algebraic loop is a closed-loop consisting of
one or more components whose outputs are directly dependent on
their inputs. Almost every system that includes feedbacks has al-
gebraic loops. The simulation does not proceed because none of
the components in the loop can generate output to break the loop.
Such a problem can be solved by redesigning the model so that the
model has no algebraic loops, solving the feed-forward algebraic
equation of the loop, or inserting a memory component with a par-
ticular initial condition anywhere in the loop. Causal.jl provides all
these loop-breaking solutions. During the inspection, when alge-
braic loops are detected, all the loops are broken, if possible, auto-
matically. Otherwise, a report is printed to notify the user to insert
memory components to break the loops.

B1

t

B2

t

L1 L2 L3

(a)

B1 B1 B2 B2
L1 L2 L3

(b)
Fig. 5: Launching tasks for the connections. (a) An example model part
consisting of the components B1 and B2 and the connections L1, L2 and
L3. (b) Tasks launched corresponding to the connections.

If the model passes the inspection, the writer and reader tasks are
launched in the initialization stage to ensure the data flow through
the model connections. At this point, a writer and a reader task are
bound to each connection. In Figure 5a model part consisting of
components B1, B2, and the connections L1, L2, L3 are shown.
When triggered, the B1 reads data from L1, calculates its output,
and writes to L2. Similarly, when triggered, B2 reads data from the
L2, calculates its output, and writes to the L3. The tasks bounded
to L1, L2, and L3 corresponding to B1 and B2 are shown in Figure
5b. Since B1 reads the data from L1 and writes data to L2, a reader
task is bounded to L1, and a writer task is bounded L2. Similarly,
since B2 reads the data from L2 and writes data to L3, a reader task
is bounded to L2, and a writer task is bounded L3. Since both a
writer and a reader task are bound to the L2, data can flow from B1
to B2 through L2. A task manager is constructed to check whether
the tasks launched during the initialization are running correctly
throughout the simulation.
The initialization is followed by the run stage. The tasks that are
launched corresponding to the components during the initialization
expect the components to be triggered through their trigger pins.
These triggers are generated in the sampling instants by the model
clock during the run stage. It is possible to sample the signals flow-
ing through the connections at equal or independent time intervals.
The generated triggers are put into the trigger pins of the compo-
nents.
It is possible for the users to determine the time instants at which
the components are sampled. The user-specified sampling time in-
stants can be regularly or irregularly spaced. However, although the
sampling time instants are determined by the user, the solvers of
the systems take adaptive steps while the systems evolve from one
sampling instant to the next. Therefore, the sampling time instants
determined by the user do not force the systems to evolve with the
specified time intervals but to sample the outputs of the systems at
those specified instants.
When the run stage is completed, the tasks launched at the initial-
ization stage are closed in the termination stage and the simulation
ends.
The sampled values are interpolated for a duration of one sampling
period so that the components can evolve independently. The sam-
pling period is an essential factor that affects the accuracy of the
simulation results directly.

3. Illustrative Examples
3.1 Simulation of Models Having Different

Component Types
In Causal.jl, it is possible to simulate models that include compo-
nents represented by different types of equations. In Figure 6 is
given such an example model. odeds is a dynamical system rep-

3



Proceedings of JuliaCon 1(1), 2019

writer1

T

writer2

T

odeds

T

gain

T

sdeds

T

writer3

TT model

Fig. 6: A model consisting of components represented by different equation
types.

resented by the ordinary differential equation in (1) where where
x1, y1, z1 are the state variables and a = 35, b = 3, c = 28 are
system parameters.

ẋ1 = a(y1 − x1)
ẏ1 = (c− 1)x1 + cy1 − x1z1
ż1 = x1y1 − bz1

(1)

sdeds is dynamical system that is represented by the stochastic
differential equation in (2) where x2, y2, z2 are the state variables,
u = [u1, u2, u3] is the input, η is noise strength, Wt is the Wiener
process corresponding to the noise and a, b, c are the same as those
in (1).

dx2 = (a(y1 − x1) + u1)dt+ ηdWt

dy2 = ((c− 1)x1 + cy1 − x1z1)dt+ ηdWt

dz2 = (x1y1 − bz1 + u3)dt+ ηdWt

(2)

gain is a static system whose input output relation is given in (3)
where u, y, ε are the input, output and gain coefficient of the sys-
tem.

y = εu (3)

writer1 and writer2 are used to record the outputs of odeds
and sdeds, respectively, while writer3 is used to record the fast
Fourier transform (FFT) of the data flowing out of odeds [15].
Being a domain-specific-language, Causal.jl provides a syntax for
handy model construction. The program written using Causal.jl to
construct and simulate the model in Figure 6 is given in Listing
1. The program first starts with the type definitions of the compo-
nents odeds, sdeds, and gain, together with their fields’ default
values. Note that the types of components are defined as subtypes
of the corresponding abstract component types, which shows how
the user-defined component types can enrich the standard library
of Causal.jl. writer1 and writer2 are used directly to record the
data without further processing, so they do not need additional data
processing plugins. On the other hand, rather than directly record-
ing the data, writer3 is used to process the data online, so it
needs an additional plugin. FFTPlug is defined for this purpose,
and writer3 is equipped with an instance. For the sake of this ex-
ample, we used the fft function [2]. The model is constructed and
simulated for 15 seconds with a step size of 0.001 seconds. After
the simulation, the data in write1 and writer2 are read back and
plotted in Figure 7. From Figure 7b, the presence of the noise is
apparent in the trajectory of sdeds.

x1

y1

(a)

x2

y2

(b)
Fig. 7: (a) x1 − y1 trajectory of odeds. (b) x2 − y2 trajectory of sdeds.

The individual evolution of components makes it possible to simu-
late such models that include components represented by different
equations.
Causal.jl adopts a causal modeling approach in which the data flow
through the connections is unidirectional. Components that write
data to a connection drives other components that read data from
the same connection. Thus, the dependency structure of a model
can be extracted by following the components that read data from
the connections bound to the output ports of model components.
The order in which the connections are specified is arbitrary. One
does not need to follow the true data flow directions through the
connections. Therefore, complex topologies with many compo-
nents can be defined concisely.

3.2 Simulation of Models Consisting of a Large
Number of Nodes

In Causal.jl, its is possible to simulate large scale complex models
consisting of a large number of dynamical system nodes. As an
example, a network of continuous time identical dynamical systems
is given Figure 8. The nodes of the network evolve by

ẋi = f(xi) + ui, i = 1, . . . , n (4)

where

ui =

n∑
i=1

εijΓxj , i = 1, . . . , n, (5)

n is the number of nodes, xi ∈ Rd is the state vector of node i,
f : R 7→ Rd is the function corresponding to the individual node
dynamics, εij ≥ 0 is the coupling strength between the nodes i and
j. The diagonal matrix Γ = diag(γ1, γ2, . . . , γd) determines by
which state variables the nodes are connected to each other. The
matrix E = [εij ] ∈ Rn,n, εij = εji ≥ 0,

∑n
j=1 εij = 0, i =

1, . . . , n determines the network topology: if εij > 0, there is a

4



Proceedings of JuliaCon 1(1), 2019

1

2

3

4

5

6

7
8

9
10

111213141516
17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34
35

36 37 38 39 40 41
42

43
44

45

46

47

48

49

50

Fig. 8: A network consisting of identical dynamical system nodes. The
spheres and the line segments represent the dynamical system nodes and
the connection between them, respectively.

connection between the nodes i and j, if εij = 0, there is no con-
nection between the nodes i and j.
In the network given in Figure 8, n = 50, f is the Lorenz dynamics
given by,

ẋi,1 = σ(xi,2 − xi,1)
ẋi,2 = xi,1(ρ− xi,3)− xi,2
ẋi,3 = xi,1xi,2 − βxi,3

(6)

where σ = 10, β = 8/3, ρ = 28 are system parameters, Γ =
diag(1, 0, 0). The network has Wattz-Strogatz topology that has a
vertex degree of 10 and that is randomized with a probability of
0.5 [19].
The model in Figure 8 is given in Figure 9. node k for k =
1, . . . , n correspond to the dynamical system nodes of the network.
From (4) and (5), we see that the states of the nodes are taken as
their outputs, weighted by the coupling strengths and fed back to
their inputs. Hence, coupler is used to construct the weighted out-
puts. writer records the nodes’ outputs. The model has algebraic
loops Lk for k = 1, . . . , n, where the algebraic loop Lk consists of
node k and coupler.
The program written using Causal.jl to construct and simulate the
model in Figure 9 is given in Listing 2. Having defined the types of
dynamical system nodes and the coupler, the model is constructed
and simulated for 100 seconds with a sampling period of 0.005
seconds. After the simulation, the simulation data is read back from
the writer and the mean square error (MSE)

MSE(t) =
1

n

n∑
i=2

‖x1,1(t)− xi,1(t)‖ (7)

is computed and plotted. It is seen from Figure 10c that the all the
nodes in the network synchronize with each other as the MSE goes
to zero as time evolves.

node 1

T ... coupler

Tnode n

T writer

T

... ...

u1

un

...

u1

un

T model

Fig. 9: Block diagram model of the network in Figure 8.

0 25 50 75 100

-10

0

10

20

t [seconds]

x1,1

(a)

-10 0 10 20

-20

-10

0

10

20

x1,1

x1,2

(b)

0 1 2 3
0.0

0.1

0.2

0.3

t [seconds]

MSE

(c)
Fig. 10: Simulation results the model given in Figure 9. (a) Time waveform
of x1,1. (b) x1,1 − x1,2 trajectory. (b) MSE.

Note from the program in Listing 2 that memory components are
not used to break algebraic loops of the model. Causal.jl is capa-
ble of detecting and breaking these algebraic loops automatically
without requiring any user intervention.

5



Proceedings of JuliaCon 1(1), 2019

4. Conclusion
In this paper, we introduced Causal.jl. In Causal.jl, the simulation
is performed by evolving the components according to their math-
ematical equations between the sampling intervals in parallel and
independently. The components can be static or dynamical or rep-
resented by mathematical equations having continuous or discrete-
time variables. The simulation of the models consisting of compo-
nents defined by ordinary, random ordinary, stochastic, delay dif-
ferential, differential-algebraic, or difference equations is possible.
It is not an obligation to describe all the model components with
the same type of mathematical equation.
The data flowing through the connections can be directly recorded
or visualized during the simulation. In addition to the offline an-
alyzes, with user-defined plugins, it is also possible to carry out
online data analysis such as extracting statistical or spectral prop-
erties, applying different signal processing techniques, etc.
The model components evolve in parallel and simultaneously. The
tasks of the Julia programming language is used for this parallel
evolution. The tasks allow switching between the evolution of the
components during the simulation. Using the Julia programming
language’s distributed computing tools, it is possible to distribute
computation workload on multiple processors.
Especially when considering extensive system networks consisting
of thousands of system nodes, it is an important advantage that the
system models can be created easily and quickly, that such models
can be simulated in multiple microprocessor cores with distributed
programming tools and that the proposed tool can provide this with
an easy syntax.

5. Acknowledgements
This work was supported by Scientific Research Projects
Funding Program of Dokuz Eylül University (project no:
2020.KB.FEN.007).

6. References
[1] Causal.jl - a modeling and simulation framework adopt-

ing causal modeling approach. "https://github.com/
zekeriyasari/Causal.jl", 2020.

[2] Fftw.jl - julia bindings to the fftw library for fast
fourier transforms. "https://github.com/JuliaMath/
FFTW.jl", 2020.

[3] The julia programming language. "https://julialang.
org/", 2020.

[4] Plots.jl - powerful convenience for julia visualizations
and data analysis. "https://github.com/JuliaPlots/
Plots.jl", 2020.

[5] Simulink-simulation and model-based design. "https://
www.mathworks.com/products/simulink.html", 2020.

[6] Dagger.jl - a framework for out-of-core and parallel exe-
cution. "https://github.com/JuliaParallel/Dagger.
jl", 2021.

[7] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B
Shah. Julia: A fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017.

[8] Hilding Elmqvist. A structured model language for large con-
tinuous systems. PhD Thesis TFRT-1015, 1978.

[9] George Giorgidze and Henrik Nilsson. Higher-order non-
causal modelling and simulation of structurally dynamic sys-
tems. In Proceedings of the 7th International Modelica Con-

ference; Como; Italy; 20-22 September 2009, number 043,
pages 208–218. Linköping University Electronic Press, 2009.

[10] M Malini Lamego. Adaptive structures with algebraic loops.
IEEE transactions on neural networks, 12(1):33–42, 2001.

[11] Ion Matei, Conrad Bock, and Ion Matei. Modeling method-
ologies and simulation for dynamical systems. US Depart-
ment of Commerce, National Institute of Standards and Tech-
nology, 2012.

[12] Pieter J Mosterman. Hybrsim—a modelling and simulation
environment for hybrid bond graphs. Proceedings of the In-
stitution of Mechanical Engineers, Part I: Journal of Systems
and Control Engineering, 216(1):35–46, 2002.

[13] Christoph Nytsch-Geusen, Thilo Ernst, André Nordwig, Pe-
ter Schwarz, Peter Schneider, Matthias Vetter, Christof Wit-
twer, Andreas Holm, Thierry Nouidui, Jürgen Leopold, et al.
Advanced modeling and simulation techniques in mosilab:
A system development case study. In Proceedings of the 5th
International Modelica Conference, Arsenal Research, Wien,
2006.

[14] Andreas Pfeiffer, Matthias Hellerer, Stefan Hartweg, Mar-
tin Otter, and Matthias Reiner. Pysimulator–a simulation and
analysis environment in python with plugin infrastructure.
2012.

[15] John G Proakis. Digital signal processing: principles algo-
rithms and applications. Pearson Education India, 2001.

[16] Christopher Rackauckas and Qing Nie. Differentialequations.
jl–a performant and feature-rich ecosystem for solving differ-
ential equations in julia. Journal of Open Research Software,
5(1), 2017.

[17] James Fairbanks Seth Bromberger and other contributors.
Juliagraphs/lightgraphs.jl: an optimized graphs package for
the julia programming language. "https://github.com/
JuliaGraphs/LightGraphs.jl", 2017.

[18] DA Van Beek. Variables and equations in hybrid systems with
structural changes. In Proc. 13th European Simulation Sym-
posium, Marseille, pages 30–34. Citeseer, 2001.

[19] Duncan J Watts and Steven H Strogatz. Collective dynamics
of ‘small-world’networks. nature, 393(6684):440–442, 1998.

[20] Dirk Zimmer. Introducing sol: A general methodology for
equation-based modeling of variable-structure systems. In
Proceedings of the 6th International Modelica Conference,
pages 47–56. Citeseer, 2008.

6

https://github.com/zekeriyasari/Causal.jl
https://github.com/zekeriyasari/Causal.jl
https://github.com/JuliaMath/FFTW.jl
https://github.com/JuliaMath/FFTW.jl
https://julialang.org/
https://julialang.org/
https://github.com/JuliaPlots/Plots.jl
https://github.com/JuliaPlots/Plots.jl
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://github.com/JuliaParallel/Dagger.jl
https://github.com/JuliaParallel/Dagger.jl
https://github.com/JuliaGraphs/LightGraphs.jl
https://github.com/JuliaGraphs/LightGraphs.jl


Proceedings of JuliaCon 1(1), 2019

APPENDIX

Listing 1: Program using Causal.jl for the simulation of the system in Figure 6. Plots.jl is used to plot the simulation data while FFTW.jl is
used to compute the FFT of the simulation data [2, 4].� �
using Causal , Plots , FFTW

# Define ODE system type under AbstractODESystem
@def_ode_system mutable struct ODESys { RH , RO , IP , OP } <: AbstractODESystem

righthandside :: RH = function fode ( dx , x, u, t, a= 35 ., b=3., c= 28 .)
dx [1] = a * (x[2] - x[1])
dx [2] = (c - a) * x[1] + c * x[2] - x[1] * x[3]
dx [3] = x[1] * x[2] - b * x[3]

end
readout :: RO = (x, u, t) -> x
state :: Vector { Float64 } = rand (3)
input :: IP = nothing
output :: OP = Outport (3)

end

# Define SDE system type under AbstractSDESystem
@def_sde_system mutable struct SDESys { DR , DF , RO , IP , OP } <: AbstractSDESystem

drift :: DR = function fsde ( dx , x, u, t, a= 35 ., b=3., c= 28 .)
dx [1] = a * (x[2] - x[1]) + u[1](t)
dx [2] = (c - a) * x[1] + c * x[2] - x[1] * x[3] + u[2](t)
dx [3] = x[1] * x[2] - b * x[3] + u[3](t)

end
diffusion :: DF = ( dx , x, u, t, η= 10 .) -> ( dx .= η)
readout :: RO = (x, u, t) -> x
state :: Vector { Float64 } = rand (3)
input :: IP = Inport (3)
output :: OP = Outport (3)

end

# Define Gain system type under AbstractStaticSystem
@def_static_system struct GainSys { RO , IP , OP } <: AbstractStaticSystem

readout :: RO = (u,t, ε =0 .1 ) -> ε * u
input :: IP = Inport (3)
output :: OP = Outport (3)

end

# Define plugin type under AbstractPlugin
@def_plugin struct FFTPlug { PR } <: AbstractPlugin

process :: PR = x -> fft (x, 2) # Computes FFT of the data `x `
end

# Construct model
@defmodel model begin

@nodes begin
odeds = ODESys () # Add odeds component
gain = GainSys () # Add gain component
sdeds = SDESys () # Add sde components
writer1 = Writer ( input = Inport (3)) # Add writer without plugin
writer2 = Writer ( input = Inport (3)) # Add writer without plugin
writer3 = Writer ( input = Inport (3), plugin = FFTPlug ()) # Add writer with ` FFTPlug ` plugin

end
@branches begin

odeds => gain # Add connection from `odeds ` to `gain `.
gain => sdeds # Add connection from `gain ` to `sdeds `.
odeds => writer1 # Add connection from `odeds ` to ` writer1 `.
sdeds => writer2 # Add connection from `sdeds ` to ` writer2 `.
odeds => writer3 # Add connection from `odeds ` to ` writer3 `.

end
end

# Simulate model
sim = simulate !( model , 0, 0 .0 01 , 15 ) # Simulate from 0 to 15 seconds with a step size of 0.001 seconds

# Plot simulation data
t, x1 = read ( getnode ( model , : writer1 ). component )
t, x2 = read ( getnode ( model , : writer2 ). component )
x3 = read ( getnode ( model , : writer3 ). component , flatten = false )
plot ( x1 [:, 1], x1 [:, 2])
plot ( x2 [:, 1], x2 [:, 2])
println ( x3 )� �

7



Proceedings of JuliaCon 1(1), 2019

Listing 2: Program using Causal.jl for the simulation of the system in Figure 8. Plots.jl is used to plot the simulation data while LightGraphs.jl
is used to construct the connectiviy matrix of the network topology [4, 17]� �
using Causal , Plots
using LightGraphs : watts_strogatz , laplacian_matrix

# Define DynamicSystem type under AbstractODESystem
@def_ode_system mutable struct DynamicSystem { RH , RO , IP , OP } <: AbstractODESystem

righthandside :: RH = function f( dx , x, u, t, σ= 10 ., β=8/3, ρ= 28 )
dx [1] = σ * (x[2] - x[1]) + u[1](t)
dx [2] = x[1] * (ρ - x[3]) - x[2] + u[2](t)
dx [3] = x[1] * x[2] - β * x[3] + u[3](t)

end
readout :: RO = (x, u, t) -> x
state :: Vector { Float64 } = rand (3)
input :: IP = Inport (3)
output :: OP = Outport (3)

end

# Define Coupler type under AbstractStaticSystem
@def_static_system struct CouplerSystem { ET , CT , IP , OP , RO } <: AbstractStaticSystem

E:: ET
P:: CT
input :: IP = Inport ( size (E, 1) * size (P, 1))
output :: OP = Outport ( size (E, 1) * size (P, 1))
readout :: RO = (u, t, E=E, P=P) -> kron (E, P) * u

end

# Construct network parameters
n = 50 # Number of nodes
d = 3 # Dimension of each node
ε = 20 . # Coupling strength
components = [ DynamicSystem () for i in 1 : n]
E = ε * collect (- laplacian_matrix ( watts_strogatz (n, 10 , 0 .5 ))) # Connectivity matrix of network topology
P = [1 0 0; 0 0 0; 0 0 0] # Systems are coupled by their first state variable .

# Construct model
model = Model ()

# Add components
for (i, component ) in enumerate ( components )

addnode !( model , component , label = Symbol (" node $i"))
end
addnode !( model , CouplerSystem (E=E, P=P), label = Symbol (" coupler "))
addnode !( model , Writer ( input = Inport (n * d)), label = Symbol (" writer "))

# Add connections
m = n + 1
for (j, k) in zip (1:n, map (i -> i : i + d - 1, 1 : d : n * d))

addbranch !( model , j => m, 1 : d => k)
addbranch !( model , m => j, k => 1 : d)

end
p = n + 2
for (j, k) in zip (1:n, map (i -> i : i + d - 1, 1 : d : n * d))

addbranch !( model , j => p, 1 : d => k)
end

# Simulate model
sim = simulate !( model , 0, 0 .0 01 , 100 .)

# Read and plot the simulation data
t, x = read ( getnode ( model , : writer ). component )

# Compute mean square error
mse = sqrt .( sum ( diff (x[:, 1 : d : end ], dims =2).ˆ2/n, dims =2))

# Plot results
k = 3000
plot (t, x[:, 1] , label ="")
plot (x[:, 1], x[:,2], label ="")
plot (t[1:k], mse [1:k], label ="")� �

8


	Introduction
	Modeling and Simulation
	Modeling
	Components
	Ports and Connections
	Simulation

	Illustrative Examples
	Simulation of Models Having Different Component Types
	Simulation of Models Consisting of a Large Number of Nodes

	Conclusion
	Acknowledgements
	References

