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Density-functional theory (DFT) is a widespread method for sim-
ulating the quantum-chemical behaviour of electrons in matter.
It provides a first-principles description of many optical, me-
chanical and chemical properties at an acceptable computational
cost [16, 2, 3]. For a wide range of systems the obtained predic-
tions are accurate and shortcomings of the theory are by now well-
understood [2, 3]. The desire to tackle even bigger systems and
more involved materials, however, keeps posing novel challenges
that require methods to constantly improve. One example are so-
called high-throughput screening approaches, which are becoming
prominent in recent years. In these techniques one wishes to sys-
tematically scan over huge design spaces of compounds in order to
identify promising novel materials for targeted follow-up investi-
gation. This has already lead to many success stories [14], such as
the discovery of novel earth-abundant semiconductors [11], novel
light-absorbing materials [20], electrocatalysts [8], materials for
hydrogen storage [13] or for Li-ion batteries [1]. Keeping in mind
the large range of physics that needs to be covered in these stud-
ies as well as the typical number of calculations (up to the order of
millions), a bottleneck in these studies is the reliability and perfor-
mance of the underlying DFT codes.

To tackle these aspects multidisciplinary collaboration with
mathematicians developing more numerically stable algorithms,
computer scientists providing high-performance implementations,
physicists and chemists designing appropriate models, and appli-
cation scientists integrating the resulting methods inside a suitable
simulation workflow is essential. While to date already a size-
able number of DFT codes exist, e.g. ABINIT [19], Quantum-
Espresso [6] or VASP [15] to name only a few, they lack sufficient
flexibility inside their low-level computational routines to easily
support fundamental research in computer science or mathematics.
To test emerging approaches motivated from these subjects in DFT
— such as automatic differentiation, multi-precision methods, GPU
acceleration, error estimation and numerical analysis — these com-
munities have in the past resorted to developing their own codes.
These codes in turn are not performant enough to scale to the level
required to test resulting DFT approaches in practical simulations.

To overcome this barrier we have developed the density-functional
toolkit (DFTK, https://dftk.org), a Julia package for DFT
simulations in solid-state systems with the explicit goal to bundle
the research efforts of all involved communities, see Figure 1. With
an accessible code base (around 6000 lines) and a performance
comparable to established DFT packages it can both be employed
for mathematical research on reduced models and toy problems,
but also for simulations including systems beyond 800 electrons.
After less than two years of development our code shows a size-
able feature set: We support 1D / 2D / 3D problems, a multitude
of solution algorithms for DFT, hybrid thread / MPI-based par-
allelism. Problems can be based upon custom analytic potentials,
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Fig. 1. The multidisciplinary directions of research in density-functional
theory for which DFTK provides a joint software platform.

e.g. where results can be mathematically proven, but also state-
of-the-art DFT methods such as PBE [18] in combination with
Goedecker-type pseudopotentials [7]. Our code is well-integrated
in the Julia ecosystem and features interfaces to established Python
packages in the materials science community such as the atomistic
simulation environment (ASE) [12] or pymatgen [17] for setting up
or post-processing simulations. The entrance barrier to get started
with DFTK is kept low by designing the code in line with the math-
ematical and physical structure of the DFT problem.

As a result DFTK is highly suitable to rapidly prototype new phys-
ical models or support the mathematical analysis of DFT methods,
which is demonstrated in a number of recent papers [4, 5, 9, 10] by
us and our collaborators. In particular our recent research employed
DFTK (a) to derive a posteriori error estimates for simple DFT-like
models [10], which will help to construct automatic error balanc-
ing strategies in the future, and (b) to develop black-box precondi-
tioning strategies to speed up DFT calculations on large inhomo-
geneous systems [9]. Both these projects were only possible since
DFTK allowed us to tackle reduced models, where one could ob-
tain mathematical or physical insight, and then test the new meth-
ods on realistic full-scale applications. We hope that DFTK will
be a useful platform for future multidisciplinary developments in
density-functional theory. See https://docs.dftk.org for doc-
umentation and examples to get started with DFTK.
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