
Proceedings of JuliaCon

SemanticModels.jl: A Julia Package for Scientific Model
Augmentation

Micah Halter1, Sreenath Raparti1, Kun Cao1, Christine Herlihy1, and James Fairbanks1

1Georgia Tech Research Institute, Atlanta, USA

ABSTRACT
SemanticModels.jl is a package that takes advantage of meta-
modeling and meta-programming to automate model augmentation
and creation. We chose Julia for our project because of the pow-
erful type system, the efficient internal abstract syntax tree (AST),
and the embedded domain specific languages (DSL) that emerge as
a result through the multiple dispatch mechanism for all libraries
in the Julia ecosystem [1]. The dynamic type inference and method
generation has significant and powerful downstream effects which
enables dynamic model manipulation with efficient code genera-
tion. These DSLs allow for strong theoretical category definitions
and classifications of models to define conceptually sound univer-
sal rewrite rules for any given model class.

Keywords
Modeling Frameworks, Meta-programming, Category Theory

1. Methodological Approach
Introduction. SemanticModels.jl facilitates several meta-

modeling tasks by detecting and exploiting the implicit relation-
ships between the semantically rich, natural language-based repre-
sentations of scientific knowledge found in academic papers, and
the relatively semantically sparse, but modular and precise repre-
sentations found in code. We provide a generalized model structure
to support metamodeling tasks that may be exploratory, iterative,
and/or inter-disciplinary in nature. Our software can augment sci-
entific workflows in support of a wide range of objectives, from
model space exploration and hypothesis generation to model selec-
tion in complex workflows.

Language Selection. Julia breaks the mold of other common
scientific computing languages such as R, Python, and MATLAB
by emphasizing features such as multiple dispatch and meta-
programming. Meta-programming is the ability to write programs
that generate programs, usually, by representing code as a data
structure within the program. This facilitates more generalized rou-
tines to modify, generate, and transform programs. Julia meta-
programming is much easier than generating code for a static com-
piler, and because of the Julia just-in-time compiler, yields faster
executions than a dynamic language like Python.

Model Augmentation. The susceptible-infected-susceptible
(SIS) model shown in Figure 1a is one of the simplest models of
infectious disease. Susceptible individuals, S, are infected by in-
fected individuals, I , at a per-capita rate βI , and infected individ-
uals recover at a per-capita rate γ to become susceptible again. An
extension of this model is the SIR model outlined in Figure 1b, the

SIR model adds a new state, R, for individuals that have recov-
ered from their infection [2] and are no longer susceptible to new
infections. The core of functionality shown in Figure 1c ingesting
and manipulating previously written modeling scripts. For exam-
ple, taking a code that implements an SIS model and transform-
ing it into an SIR model using meta-programming. In the model
function, the AST of a program is indexed for specific features
that are known to be important for dynamical systems such as the
states that the population can occupy, the rate relationships, and the
state transition functions. SemanticModels.jl captures the meaning-
ful structures of a code with links to how a library defines a class of
problems and enables high level program transformations that sci-
entists recognise as perturbing the model. In Figure 1c, when we
look at the programmatic replacement for the dS term, the AST is
searched for the definition of dS. The add function takes in a newly
defined state with a name, transition function, and initial value and
places each of those components in the appropriate location within
the AST. The new model is solved by generating a new problem
instance along with the necessary methods and calling the library
solver functions.

Conclusion. SemanticModels.jl aims to leverage scientific
knowledge currently trapped in the body of scientific code. While
open source code is a prerequisite for reproducible research, it is
not sufficient towards understanding complex modeling code. We
present an automated system for extracting information from, rea-
soning about, and augmenting computational models. This frame-
work enables the extension of models with new parameters and
components, leveraging the dynamic nature of the Julia compiler.

(a) The flow of a SIS model. (b) The flow of a SIR model.� �
read model into SemanticModels
sis = parsefile("epicookbook/src/SISModel.jl");
sis = model(ExpODEModel,sis);
redefine a flux (rate) within the model
replace(sis.funcs[1],:dS,:(-β * S * I))
define a new state and add it to our model
dR = Definition(:dR,:(γ * I),0)
sis.funcs[1] = add(sis.funcs[1],dR)� �

(c) SIS to SIR using SemanticModels.jl
Fig. 1: An example of model manipulation.

1

Proceedings of JuliaCon 1(1), 2019

2. References
[1] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah. Ju-

lia: A fresh approach to numerical computing. SIAM Review,
59(1):65–98, 2017.

[2] S. Frost, A. Walsh, and J. Thompson. Epicookbook: A cook-
book of epidemiological models, 2018.

2

	Methodological Approach
	References

