
GlobalSearchRegression.jl:
Building bridges between Machine Learning and

Econometrics in Fat-Data scenarios
Demian Panigo1, 3, Pablo Glüzmann1, 2, Esteban Mocskos1, 5, Adan Mauri Ungaro4, Valentin Mari4, and

Nicolás Monzón3

1National Scientific and Technical Research Council (CONICET)
2Center For Distributive, Labor and Social Studies (CEDLAS-UNLP)

3Laboratory of Economics, Technology, Innovation and Finance (LETIF-UNLP)
4National University of La Plata

5National University of Buenos Aires

ABSTRACT
The aim of this paper is twofold. The first one is to describe a novel
research-project designed for building bridges between machine
learning and econometric worlds (ModelSelection.jl).The
second one is to introduce the main characteristics and comparative
performance of the first Julia-native all-subset regression algorithm
included in GlobalSearchRegression.jl (v1.0.5). As other
available alternatives, this algorithm allows researchers to obtain
the best model specification among all possible covariate combina-
tions - in terms of user defined information criteria-, but up to 3165
and 197 times faster than STATA and R alternatives, respectively.

Keywords
Julia, Parallel computing, Econometrics, all-subset regression, Ma-
chine Learning, Fat-Data

1. Introduction
While allowing for better and more accurate analysis (and fore-
casts), fat-data availability generates a revival of Bellman’s [9] -and
newer- high-dimensionality concerns:

(1) Exponential increase in required information and execution
time [34] ;

(2) Overfitting risk [17];
(3) Less-informative euclidean distances [4]; and
(4) Unfeasible estimators [10].

Notwithstanding, the advantage of having thousands/millions of
features to deal with complex phenomena stimulates an unprece-
dented number of methodological -and technological- improve-
ments to manage the ‘curse of dimensionality’ [11].

In Economics, this process has a dual approach with machine-
learning (ML) and econometric (EC) algorithms emerging for dif-
ferent purposes: the former for prediction/forecasts (focusing on
ŷ) and the latter for estimation/causal inference (interested in β̂).
Alternatively, the same distinction can be expressed in Diebold’s

terms as non-causal vs causal prediction (see [7]), where ML algo-
rithms are designed to reduce prediction sampling-risks -i.e. learn-
ing through cross-validation techniques- and EC methods to iden-
tify unbiased multivariate relationships -i.e. avoiding consistency
issues through residual and coefficient tests for model selection.

In turn, ML feature selection algorithms can be classified into three
different families: Filters, Wrappers and Embedded -depending
on whether they use some classifier/response variable information
or not, or how variable selection is made along with the learn-
ing process, see [14]. Similarly, most EC dimensionality reduc-
tion approaches can be classified into three different groups: Ex-
haustive, General-to-Specific and Specific-to-General -depending
on the search pattern; see [22].

Despite significant improvements in recent econometric devel-
opments -like PCGIVE/Autometrics or Retina algorithms, which
combine some ML and EC characteristics-, available alternatives
fails to fully exploit cross-validation and model averaging capabil-
ities -see [19], [31], [15], [18], [29], [25], and [13].

Conversely, newer ML algorithms -like Convolutional Neural Net-
works or Bootstrap-Based LASSO, which improve complex non-
linear adjustment or model selection under regularization schemes-
achieved unprecedented forecast accuracy but disregarding model
interpretability and/or parameter estimation issues -i.e omitting
residual and coefficient tests; see [12].

Following Varian’s [33] advices, about ML and EC complemen-
tarities -i.e. merging algorithms from different families to reduce
both sampling and model uncertainty-, we are developing a novel
multi-layer-multi-algorithm methodology combining two reinforc-
ing paradigms: The LSE “Testimation” approach -to obtain infor-
mation about residual properties, see [2]- and the Bayesian-like
“Double-model averaging” -across different covariates and sub-
samples, see [26]. This methodology includes five complementary
layers -handling cross-section, time series and panel data-: 1) Pre-
processing: with outlier detection, missing values identification,
seasonal adjustment and normalization/standardization functions;
2) Feature extraction: creation of logs, squares, inverses and in-
teractions from selected variables; 3) Feature pre-selection: using

1

Proceedings of JuliaCon 1(1), 2019

filter and embedded ML algorithms like CFS, Variance threshold
and LASSO functions; 4) Final feature selection: with a modified
all-subset regression approach, including residual tests and model
averaging capabilities; 5) Post-estimation fine-tuning: coefficient
re-evaluation through cross-validation techniques and model aver-
aging across different k-fold results.

The objective of this paper is to introduce the main characteris-
tics and comparative performance of a key layer of our methodol-
ogy: the modified all-subset regression algorithm included in Glob-
alSearchRegression.jl (v1.0.5). As other available alternatives (like
MuMin-pdredge in R, or GSREG Stata alternatives), this Julia al-
gorithm allows researchers to obtain the best model specification
among all possible covariate/feature combinations - in terms of user
defined information criteria-, but up to 3165 times faster than Stata
and 197 times faster than R.

2. Package’s main features
Written in Julia, GlobalSearchRegression is a parallel (and im-
proved) version of the Stata-GSREG all-subset regression com-
mand (get the original code here). The package structure is quite
simple, as shown in figure 1:

Fig. 1. GlobalSearchRegression.jl Structure Flowchart

Through the gsreg function of the interface.jl internal pack-
age, users set the appropriate database to be used, the general un-
restricted model -GUM, which defines the search space- and ad-
ditional options for model selection. With this information and
complementary supporting functions and definitions provided by
strings.jl -i.e. error messages-, utils.jl -i.e. equation for-
matting, combinatorial analysis, database manipulation, sorting re-
sults, etc.- and gsreg_results.jl -i.e. the structure to save es-
timation results-, the core.jl package perform the all-subset-
regression algorithm explained in the pseudocode below, to ob-
tain the following outputs: 1) a matrix -optionally exported to a
csv file through utils.jl- including regression coefficients, se-
lection criteria, observations and (optionally) t-test, residual tests,
averaging-weights and out-of-sample metrics for every alternative
model; 2) a text file -also displayed on screen- which contains the
best model specification and (optionally) model averaging results
in terms of he user-selected information criteria -see multiple ex-
amples in runtest.jl-.

Pseudo-code: Core.jl

1. function gsreg_single_proc_results!(args. . .)
1.1. Select regression covariates
1.2. Perform QR Decomposition
1.3. Estimate regression results
1.4. Calculate additional tests
1.5. Save individual results in a Shared Array
end function gsreg_single_proc_results!(args. . .)

2. function gsreg_proc_results!(args. . .)
2.1. for j = 1 : ((k2 − 1)/nworkers) # where nworkers is

the user defined number of cores, and k is the numbers of
covariates in the GUM
2.1.1. order = (j − 1) ∗ nworkers+ workerID
2.1.2. gsreg_single_proc_results!(order, args...)
end for

end function gsreg_single_proc_results!(args. . .)

3. function proc!(args. . .)
3.1. Create environment (Shared Array and other objects)
3.2. for workerID = 1 : nworkers

3.2.1 spawn jobs among workerIDs to perform
gsreg_proc_results!

end for
3.3. Perform vector operations
3.4. Call utils.jl sort function
3.5. Create results array
end function proc!(args. . .)

4. Export results using gsreg_results.jl structure
5. Export summary results to a txt file
6. Optionally send the results structure to utils.jl to export a

csv file.

end module Core.jl.

3. Comparative performance against R and STATA
In table 1, we present a performance comparison of our GLob-
alSearchRegression Julia-package against its main alternatives:
MuMin-pdredge and GSREG (written in Stata1, espectively). Ex-
ecution times were obtained from a HED architecture using a
Threadripper 1950x build, with 16 cores (32 threads) overclocked
to 3.8GHz and 64 GiB of DDR4-RAM at 3200Mhz. Comparative
scripts were implemented on Julia 1.0.3, R 3.6.0 and Stata 15 IC,
running on Ubuntu 18.04.2 LTS -Linux kernel 4.15-2

For experimental -random variable- databases with a few covariates
-up to 15 explanatory variables-, our Julia algorithm only provides
significant time improvement in standard personal computers -e.g.
4 cores-, being up to twice faster than R and 4 times faster than
Stata. For HED computers or HPC nodes, there is almost no differ-
ence among the best result obtained for each alternative.

However, for databases with 20 or more covariates, our Julia all-
subset-regression code is always faster, irrespective of the number
of observations or threads -up to 3165 times faster than STATA

1The parallel version of Stata-GSREG is still under development. A pre-
liminary version is available upon request from authors
2All these test are available here

2

https://github.com/ParallelGSReg/GlobalSearchRegression.jl
https://github.com/ParallelGSReg/GlobalSearchRegression.jl
https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf
https://www.researchgate.net/profile/ Pablo_Gluzmann/publication/264782750_Global_Search_Regression_A_New_Automatic_Model-selection_Technique_for_Cross-section_Time-series_and_Panel-data_Regressions/ links/53eed18a0cf23733e812c10d/Global-Search-Regression-A-New-Automatic-Model-selection-Technique-for-Cross-section-Time-series-and-Panel-data-Regressions.pdf? origin=publication_detail
https://ideas.repec.org/c/boc/bocode/s457737.html
https://github.com/ParallelGSReg/GlobalSearchRegression.jl/tree/master/juliacon2019proceedings/reproducibility

Proceedings of JuliaCon 1(1), 2019

Table 1. Average execution time and speed-up metrics -over 5 runs-
Cov. Obs Threads Execution time (in seconds) Parallel Speed-up Julia Speed-up

Julia R Stata Julia R Stata Over R Over Stata
15 100 1 14.0 69.1 646.6 1.0 1.0 1.0 4.9 46.2
15 100 4 17.0 33.4 80.3 0.8 2.1 8.0 2.0 4.7
15 100 16 22.0 23.6 22.1 0.6 2.9 29.2 1.1 1.0
15 100 32 31.4 22.3 15.1 0.4 3.1 43.0 0.7 0.5
15 1000 1 18.6 74.9 667.5 1.0 1.0 1.0 4.0 35.9
15 1000 4 18.5 35.3 81.6 1.0 2.1 8.2 1.9 4.4
15 1000 16 22.2 24.6 23.3 0.8 3.1 28.7 1.1 1.0
15 1000 32 31.5 21.5 16.0 0.6 3.5 41.6 0.7 0.5
15 10000 1 61.6 142.0 809.0 1.0 1.0 1.0 2.3 13.1
15 10000 4 30.5 61.4 114.7 2.0 2.3 7.1 2.0 3.8
15 10000 16 25.7 38.4 37.3 2.4 3.7 21.7 1.5 1.5
15 10000 32 33.4 35.5 26.7 1.8 4.0 30.3 1.1 0.8
20 100 1 169.2 10538.9 535693.2 1.0 1.0 1.0 62.3 3165.1
20 100 4 65.6 9275.4 75510.2 2.6 1.1 7.1 141.4 1151.1
20 100 16 44.7 8855.2 4526.3 3.8 1.2 118.4 197.9 101.2
20 100 32 51.2 8732.4 1658.2 3.3 1.2 323.0 170.7 32.4
20 1000 1 362.4 10765.9 1.0 1.0 29.7
20 1000 4 119.0 9352.3 3.0 1.2 78.6
20 1000 16 58.8 8926.4 6.2 1.2 151.8
20 1000 32 59.8 8753.9 6.1 1.2 146.4
20 10000 1 2338.4 13218.9 1.0 1.0 5.7
20 10000 4 629.4 10287.9 3.7 1.3 16.3
20 10000 16 198.6 9392.3 11.8 1.4 47.3
20 10000 32 149.5 9041.6 15.6 1.5 60.5
25 100 1 6700.7 1.0
25 100 4 1937.7 3.5
25 100 16 913.7 7.3
25 100 32 803.9 8.3
25 1000 1 14257.4 1.0
25 1000 4 3954.2 3.6
25 1000 16 1471.4 9.7
25 1000 32 1159.9 12.3
25 10000 1 93450.0 1.0
25 10000 4 23783.8 3.9
25 10000 16 6825.6 13.7
25 10000 32 4660.4 20.1

and 197 times faster than R-. Execution time differences exponen-
tially increase with the number of covariates and slightly decrease
with available observations. Moreover, Stata and R alternatives be-
come unfeasible for databases with 25 or more covariates. For a
confirmatory analysis, in figure 2 we present execution-time kernel
densities for the 20 covariates - 100 observations - 32 threads case,
obtained from 300 independent (non-cached) runs. Kernel density
results show that execution time differences are not an artifact ob-
tained from noisy runs. Our Julia algorithm is consistently faster
han R and Stata alternatives.

A detailed speed-up analysis is also available for the 25-covariate
case. In figure 3, it’s shown that our Julia all-subset-regression algo-
rithm scales almost linearly for large databases -while the number
of threads is not higher than the number of physical cores-. With
small databases, Amdhal’s law [6] inputs change. Parallel tasks be-
come lighter and speed-up efficiency degrades consistently with ad-
ditional threads, because the marginal overhead cost of a larger en-
vironment creation is not overcompensated by parallelism gains ob-
tained from additional threads. Notwithstanding, using only physi-
cal cores speed-up efficiency is always above 45% -with an average
of 84% for 2, 4, 8 and 16 threads-.

4. Why GlobalSearchRegression.jl is faster than
existing alternatives?

4.1 JULIA platform
Despite some GlobalSearchRegression.jl specific features to
be examined below, our all-subset-regression algorithm benefits
from the well-known Julia language efficiency for High Perfor-
mance Computing tasks.

Table 2. Julia speed-up over STATA and R in basic functions
Function Speed-up over R Speed-up over Stata

recursion_fibonacci 251.28 76.92
recursion_quicksort 32.36 48.54
matrix_multiply 11.6 14.07
iteration_pi_sum 14.33 26.89
matrix_statistics 7.65 44.92
parse_integers 28.4 49.38
userfunc_mandelbrot 175.44 368.42

Simple-Average 74.44 89.88
Weighted-Average 12.15 22.01

Note: Weighted-average were estimated as the Ratio between to-
tal execution time for R or Stata, and Julia’s total execution time
-for all basic functions-. Benchmarkings were obtained using a i7-
4700MQ quad-core build, with 8 GiB of DDR3 1600 Mhz RAM,
under Windows 8 and running Julia 1.1.0, Stata 15 and R 3.5.3.

3

Proceedings of JuliaCon 1(1), 2019

Fig. 2. Execution time, speed-up and speed-up efficiency for the 20-covariate case using GlobalSearchRegression.jl

Fig. 3. Execution time, speed-up and speed-up efficiency for the 25-covariate case using GlobalSearchRegression.jl

Julia JIT-compilation allows packages to run faster than those exe-
cuted using interpreted or byte-compiled languages (like R or Stata-
Mata). Indeed, basic functions running on Julia can be up to 251
and 368 times faster than those running in R and Stata, respectively
-with an average speed-up of 75 and 90, see Table 2-.

4.2 Parallel strategy and memory setup
It is well know that multicore architectures can be used to speed-
up execution times through two main paradigms: data and task-
parallelism [35]. The preferred strategy critically depends on:

(1) Database structure;
(2) Algorithm serial portion; and
(3) Interthread communication costs.

The first discussion is about tall vs fat data. While tall databases
are more suitable for data-parallelism [8], fat-structures improve
relative performance of task-parallelism (because tasks increase ex-
ponentially with covariates/columns in feature selection problems,
see [20]).

Additionally, the choice between alternative paradigms takes into
account the Amdahl’s Law for the specific algorithm to be used.
Task-parallelism is usually better for econometric and machine
learning algorithms requiring some specific serial optimization
paths (i.e. arima-arfima models), while data-parallelism performs
better under linear-algebra solutions (i.e. OLS-family estimators,
see [24]).

Finally, we have the problem of intercomunication costs. Data-
parallelism -generally- involves intense needs of inter-thread-

communication. While task-parallelism communication costs de-
pends on Load-Balancing choices (i.e. Dynamic vs Static), they are
usually lower than data-parallelism ones 3 [30].

For feature selection problems, pros and cons of alternative strate-
gies often determine that available cores should be used for task
parallelism. Databases are fat, data-mining algorithms can include
large serial portions, and intercomunication costs can be huge for
large-multicore architectures. These reasons explain why all avail-
able all-subset-regression packages use taks-parallism to speed-up
execution times.

As for the memory setup, there are also alternative methodologies.
First, it’s necessary to choose among Static vs. Dynamic memory
allocations [32]. To improve speed-up, Static "once-and-for-all" al-
locations are often preferred (even at a cost of higher average mem-
ory utilization). Second, shared-memory strategies must be deter-
mined. Depending on both object-size and CPU architecture -cache
size and its distribution among cores-, it could be optimal to use
large shared arrays or -alternatively- smaller core-specific objects.
Splitting output matrices to work with smaller non-shared arrays
could be useful for cache optimization purposes, but it could also
entail additional communication costs and higher memory require-
ments [5]. In practice, feature selection algorithms usually prefer
shared-arrays for high performance computing.

3At least when Static Load Balancing is implemented, because it allows for
Coarse-grained granularity [23]

4

Proceedings of JuliaCon 1(1), 2019

GlobalSearchRegression.jl (execution-time) advantages have
been obtained combining:

a) Task-parallelism
b) Static Load-Balancing
c) Coarse-grained granularity
d) Static memory allocation
e) Efficient shared-array implementation

While some of these characteristics are shared with R and Stata al-
ternatives (MuMin-pdredge and GSREG, respectively), our Static
Load-Balancing algorithm outperform the round-robin R schedul-
ing (implemented by the clusterapply function included in the
parallel R-package see [16]) and the Shared-Array strategy sig-
nificantly improves I/O performance against Stata. By construction,
pure Static Load-Balancing in GlobalSearchRegression.jl avoids
Round-Robin communication costs and execution gaps. This ad-
vantage overcompensate minimal4 load-asymmetries, associated
with any static scheduling. In turn, using efficient shared-arrays
to store all-subset-regression results allows us to outperform the
Stata-GSREG methodology which heavily relies on slower I/O
disk operations (because multiple instances must be launched to
enable task-parallelism and, therefore, shared-arrays become un-
feasible).

4.3 OLS estimation
Efficient Ordinary Least Squares (OLS) algorithms rely on Lin-
ear Algebra operations (matrix decomposition, matrix inversion,
etc.).5 The traditional (X ′X)−1 operation could be time-expensive
with unstable solutions under certain conditions [27]. A preferred
method is the QR-decomposition developed by Francis [21] and
Kublanovskaya [28]. The QR factorization allows us to decompose
any full rank N × p matrix X̄ as:

X = QR (1)

where

Q is a N × p matrix with Q′Q = I ; and
R a p× p upper triangular matrix.

The QR decomposition is fast and provides stable numerical so-
lutions under rank-deficient matrices. Alternative factorizations
are either slower (SVD decomposition) or potentially unstable
(Cholesky decomposition) [3].

GlobalSearchRegression.jl OLS estimation through QR-
decompositions outperform existing Julia alternatives (like
GLM.jl) allowing for large speed-ups compared with R-lm and
Stata-regress commands. Table 3 shows execution time differ-
ences for a 200 covariates - 1000 observations - multivariate linear
regression 6.

It must be notice that execution times are compilation-free, because
all-subset-regression algorithms must perform thousand to millions
of regressions where compilation time is absent (it only affects the
first regression).

4Minimal because our static scheduler guarantees that average task-
complexity will not be too different among workers
5Optimization alternatives (i.e. Gradient descent), while quite inefficient for
linear models, can also be used for non-linear estimations [1]
6Execution times were calculated for alternative OLS algorithms available
for all-subset-regression packages in Julia, and Stata.

Table 3. Execution times for different OLS algorithms in R, Stata and
Julia

GlobalSearchRegression.jl R-lm Stata-reg GLM.jl
Execution time 0.012 0.06 0.2 0.023

Speed-up 1 5 16.67 1.92
Note: Execution times were obtained using a i7-7500 dual-core build, with 8 GiB of DDR4
RAM, under Windows 10 and running Julia 1.1.0, Stata 13 and RStudio 3.6.0. Speed-ups
are obtaining dividing each execution time by the GlobalSearchRegression.jl execution time.

5. Conclusion

"There are a number of areas where there would
be opportunities for fruitful collaboration between
econometrics and machine learning [... and] the most
important area for collaboration involves causal in-
ference". [33]

As Hal Varian emphasizes, there is a need for mutual collabora-
tion between machine learning developers/practitioners and econo-
metricians. In this paper we describe a research-project aimed
at building bridges between machine learning and econometric
worlds (ModelSelection.jl)and introduce the main character-
istics of its first outcome: a Julia-native all-subset regression al-
gorithm (GlobalSearchRegression.jl) which runs up to 3165
and 197 times faster than existing Stata and R alternatives, respec-
tively.

Throughout the paper, it has been shown that execution-time
gains are explained by multiple efficient strategies combined in
GlobalSearchRegression.jl (i.e. task parallelism, static load-
balancing, coarse-grained granularity, static memory allocation, ef-
ficient shared array implementation, and OLS estimation using neat
QR decompositions). However, the main ’explanatory variable’ is
the impressive speed-up in atomic operations obtained using the
Julia language.

Notwithstanding, increasing availability of Big and -more
challenging- Fat-data, force us to go beyond pure all-subset-
regression approaches and combine it with machine learning fea-
ture selection algorithms. Work in progress include a new hybrid
package merging LASSO capabilities, all-subset-regression robust-
ness nd K-fold cross validation strengths.

6. Acknowledgments
This research benefited from the financial support of 1) the National
Scientific and Technical Research Council and the YPF-Foundation
(PIO CONICET-YPF 13320150100020CO); and 2) the National
Agency for Scientific and Technological Promotion (PICT-2017-
0867). We would also like to thank PhD. Jorge Carrera for his tech-
nical assistance on Big-data econometric algorithms.

7. References

[1] Hervé Abdi. The method of least squares. Encyclopedia of
Measurement and Statistics. CA, USA: Thousand Oaks, 2007.

[2] Felix Abramovich and Claudia Angelini. Bayesian maximum
a posteriori multiple testing procedure. Sankhyā: The Indian
Journal of Statistics (2003-2007), 68(3):436–460, 2006.

[3] Monika Agarwal and Rajesh Mehra. Review of matrix de-
composition techniques for signal processing applications.
Int. Journal of Engineering Research and Applications,
4(1):90–93, 2014.

5

Proceedings of JuliaCon 1(1), 2019

[4] Charu Aggarwal, Alexander Hinneburg, and Keim Daniel.
On the surprising behavior of distance metrics in high di-
mensional space. In Jan Van den Bussche and Victor Vianu,
editors, International conference on database theory, Lec-
ture Notes in Computer Science, vol 1973, pages 420–434.
Springer, Berlin, Heidelberg, 2001.

[5] Muhammad Waqas Ahmed and Munam Ali Shah. Cache
memory: An analysis on optimization techniques. Interna-
tional Journal of Computer and IT, 4(2):414–418, 2015.

[6] Gene M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings
of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,
1967. ACM.

[7] Susan Athey. Machine learning and causal inference for pol-
icy evaluation. In Proceedings of the 21th ACM SIGKDD in-
ternational conference on knowledge discovery and data min-
ing, pages 5–6. ACM, 2015.

[8] Shivnath Babu, Herodotos Herodotou, et al. Massively par-
allel databases and mapreduce systems. Foundations and
Trends® in Databases, 5(1):1–104, 2013.

[9] Richard Bellman. Adaptive Control Processes: A Guided
Tour. Princeton University Press, 1961.

[10] Peter Bhlmann and Sara Van De Geer. Statistics for
high-dimensional data: methods, theory and applications.
Springer-Verlag Berlin Heidelberg, 2011.

[11] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and
Amparo Alonso-Betanzos. Feature selection for high-
dimensional data. Progress in Artificial Intelligence.
Springer-Verlag Berlin Heidelberg, 2016.

[12] Danilo Bzdok, Naomi Altman, and Martin Krzywin-
ski. Statistics versus machine learning. Nature methods,
15(4):233–234, 2010.

[13] Jennifer Castle. Empirical modeling and model selection for
forecasting inflation in a non-stationary world. Ph.d. thesis,
Nuffield College University of Oxford, 2006.

[14] Girish Chandrashekar and Ferat Sahin. A survey on fea-
ture selection methods. Computers & Electrical Engineering,
40(1):16–28, 2014.

[15] James E.H. Davidson and David F. Hendry. Interpreting
econometric evidence: The behaviour of consumers’ expen-
diture in the uk. European Economic Review, 16(1):177–192,
1981.

[16] Briti Deb and Satish Narayana Srirama. Parallel k-means
clustering for gene expression data on snow. International
Journal of Computer Applications, 71(24), 2013.

[17] Marianne Defernez and Katherine Kemsley. Avoiding over-
fitting in the analysis of high-dimensional data with artificial
neural networks (anns). Analyst, 124(11):1675–1681, 1999.

[18] Shelley Derksen and H. J. Keselman. Backward, forward and
stepwise automated subset selection algorithms: Frequency
of obtaining authentic and noise variables. British Journal
of Mathematical and Statistical Psychology, 45(2):265–282,
1992.

[19] Jurgen A. Doornik. Autometrics. In in Honour of David F.
Hendry, pages 88–121. University Press, 2009.

[20] Ian Foster. Task parallelism and high-performance languages.
IEEE Concurrency, (3):27–36, 1996.

[21] John GF Francis. The qr transformation a unitary analogue
to the lr transformation—part 1. The Computer Journal,
4(3):265–271, 1961.

[22] Pablo Glüzmann and Demian Panigo. Global search regres-
sion: A new automatic model-selection technique for cross-
section, time-series, and panel-data regressions. The Stata
journal, 15(2):325–349, 2015.

[23] Michael I. Gordon, William Thies, and Saman Amarasinghe.
Exploiting coarse-grained task, data, and pipeline parallelism
in stream programs. SIGPLAN Not., 41(11):151–162, oct
2006.

[24] Guangbao Guo. Parallel statistical computing for statisti-
cal inference. Journal of Statistical Theory and Practice,
6(3):536–565, 2012.

[25] Helmut Herwartz. A note on model selection in (time se-
ries) regression models – general-to-specific or specific-
to-general? Applied Economics Letters, 17(12):1157–1160,
2010.

[26] Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and
Chris T. Volinsky. Bayesian model averaging: A tutorial. Sta-
tistical Science, 14(4):382–401, 1999.

[27] Antony Jameson and Eli Turkel. Implicit schemes and decom-
positions. Mathematics of Computation, 37(156):385–397,
1981.

[28] Vera N Kublanovskaya. On some algorithms for the solution
of the complete eigenvalue problem. USSR Computational
Mathematics and Mathematical Physics, 1(3):637–657, 1962.

[29] Maximiliano Marinucci. Automatic prediction and model se-
lection. Ph.d. thesis, Facultad de Ciencias Económicas y Em-
presariales, Universidad Complutense de Madrid, 2008.

[30] N. Moreano and A.C.M.A.de Melo. Chapter 6 - biological se-
quence analysis on gpu. In Hamid Sarbazi-Azad, editor, Ad-
vances in GPU Research and Practice, Emerging Trends in
Computer Science and Applied Computing, pages 127 – 162.
Morgan Kaufmann, Boston, 2017.

[31] Teodosio Perez-Amaral, Giampiero M. Gallo, and Halbert
White. A flexible tool for model building: the relevant trans-
formation of the inputs network approach (retina). Oxford
Bulletin of Economics and Statistics, 65(s1):821–838, 2003.

[32] Mr Ramesh Prajapati, Mr Dushyantsinh Rathod, and Samrat
Khanna. Comparison of static and dynamic load balancing
in grid computing. International Journal For Technological
Research In Engineering, 2015.

[33] Hal R. Varian. Big data: New tricks for econometrics. Journal
of Economic Perspectives, 28(2):3–28, May 2014.

[34] Lei Yu and Huan Liu. Feature selection for high-dimensional
data: A fast correlation-based filter solution. In In Proceed-
ings of the 20th international conference on machine learn-
ing, pages 856–863. The publisher of the proceedings, 2003.

[35] Mohammed J Zaki. Parallel sequence mining on shared-
memory machines. Journal of Parallel and Distributed Com-
puting, 61(3):401–426, 2001.

6

	Introduction
	Package's main features
	Comparative performance against R and STATA
	Why GlobalSearchRegression.jl is faster than existing alternatives?
	JULIA platform
	Parallel strategy and memory setup
	OLS estimation

	Conclusion
	Acknowledgments
	References

