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ABSTRACT
The aim of this paper is twofold. The first one is to describe a novel
research-project designed for building bridges between machine
learning and econometric worlds (ModelSelection.jl).The
second one is to introduce the main characteristics and comparative
performance of the first Julia-native all-subset regression algorithm
included in GlobalSearchRegression.jl (v1.0.5). As other
available alternatives, this algorithm allows researchers to obtain
the best model specification among all possible covariate combina-
tions - in terms of user defined information criteria-, but up to 3165
and 197 times faster than STATA and R alternatives, respectively.
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1. Introduction
While allowing for better and more accurate analysis (and fore-
casts), fat-data availability generates a revival of Bellman’s [9] -and
newer- high-dimensionality concerns:

(1) Exponential increase in required information and execution
time [34] ;

(2) Overfitting risk [17];
(3) Less-informative euclidean distances [4]; and
(4) Unfeasible estimators [10].

Notwithstanding, the advantage of having thousands/millions of
features to deal with complex phenomena stimulates an unprece-
dented number of methodological -and technological- improve-
ments to manage the ‘curse of dimensionality’ [11].

In Economics, this process has a dual approach with machine-
learning (ML) and econometric (EC) algorithms emerging for dif-
ferent purposes: the former for prediction/forecasts (focusing on
ŷ) and the latter for estimation/causal inference (interested in β̂).
Alternatively, the same distinction can be expressed in Diebold’s

terms as non-causal vs causal prediction (see [7]), where ML algo-
rithms are designed to reduce prediction sampling-risks -i.e. learn-
ing through cross-validation techniques- and EC methods to iden-
tify unbiased multivariate relationships -i.e. avoiding consistency
issues through residual and coefficient tests for model selection.

In turn, ML feature selection algorithms can be classified into three
different families: Filters, Wrappers and Embedded -depending
on whether they use some classifier/response variable information
or not, or how variable selection is made along with the learn-
ing process, see [14]. Similarly, most EC dimensionality reduc-
tion approaches can be classified into three different groups: Ex-
haustive, General-to-Specific and Specific-to-General -depending
on the search pattern; see [22].

Despite significant improvements in recent econometric devel-
opments -like PCGIVE/Autometrics or Retina algorithms, which
combine some ML and EC characteristics-, available alternatives
fails to fully exploit cross-validation and model averaging capabil-
ities -see [19], [31], [15], [18], [29], [25], and [13].

Conversely, newer ML algorithms -like Convolutional Neural Net-
works or Bootstrap-Based LASSO, which improve complex non-
linear adjustment or model selection under regularization schemes-
achieved unprecedented forecast accuracy but disregarding model
interpretability and/or parameter estimation issues -i.e omitting
residual and coefficient tests; see [12].

Following Varian’s [33] advices, about ML and EC complemen-
tarities -i.e. merging algorithms from different families to reduce
both sampling and model uncertainty-, we are developing a novel
multi-layer-multi-algorithm methodology combining two reinforc-
ing paradigms: The LSE “Testimation” approach -to obtain infor-
mation about residual properties, see [2]- and the Bayesian-like
“Double-model averaging” -across different covariates and sub-
samples, see [26]. This methodology includes five complementary
layers -handling cross-section, time series and panel data-: 1) Pre-
processing: with outlier detection, missing values identification,
seasonal adjustment and normalization/standardization functions;
2) Feature extraction: creation of logs, squares, inverses and in-
teractions from selected variables; 3) Feature pre-selection: using
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filter and embedded ML algorithms like CFS, Variance threshold
and LASSO functions; 4) Final feature selection: with a modified
all-subset regression approach, including residual tests and model
averaging capabilities; 5) Post-estimation fine-tuning: coefficient
re-evaluation through cross-validation techniques and model aver-
aging across different k-fold results.

The objective of this paper is to introduce the main characteris-
tics and comparative performance of a key layer of our methodol-
ogy: the modified all-subset regression algorithm included in Glob-
alSearchRegression.jl (v1.0.5). As other available alternatives (like
MuMin-pdredge in R, or GSREG Stata alternatives), this Julia al-
gorithm allows researchers to obtain the best model specification
among all possible covariate/feature combinations - in terms of user
defined information criteria-, but up to 3165 times faster than Stata
and 197 times faster than R.

2. Package’s main features
Written in Julia, GlobalSearchRegression is a parallel (and im-
proved) version of the Stata-GSREG all-subset regression com-
mand (get the original code here). The package structure is quite
simple, as shown in figure 1:

Fig. 1. GlobalSearchRegression.jl Structure Flowchart

Through the gsreg function of the interface.jl internal pack-
age, users set the appropriate database to be used, the general un-
restricted model -GUM, which defines the search space- and ad-
ditional options for model selection. With this information and
complementary supporting functions and definitions provided by
strings.jl -i.e. error messages-, utils.jl -i.e. equation for-
matting, combinatorial analysis, database manipulation, sorting re-
sults, etc.- and gsreg_results.jl -i.e. the structure to save es-
timation results-, the core.jl package perform the all-subset-
regression algorithm explained in the pseudocode below, to ob-
tain the following outputs: 1) a matrix -optionally exported to a
csv file through utils.jl- including regression coefficients, se-
lection criteria, observations and (optionally) t-test, residual tests,
averaging-weights and out-of-sample metrics for every alternative
model; 2) a text file -also displayed on screen- which contains the
best model specification and (optionally) model averaging results
in terms of he user-selected information criteria -see multiple ex-
amples in runtest.jl-.

Pseudo-code: Core.jl

1. function gsreg_single_proc_results!(args. . . )
1.1. Select regression covariates
1.2. Perform QR Decomposition
1.3. Estimate regression results
1.4. Calculate additional tests
1.5. Save individual results in a Shared Array
end function gsreg_single_proc_results!(args. . . )

2. function gsreg_proc_results!(args. . . )
2.1. for j = 1 : ((k2 − 1)/nworkers) # where nworkers is

the user defined number of cores, and k is the numbers of
covariates in the GUM
2.1.1. order = (j − 1) ∗ nworkers+ workerID
2.1.2. gsreg_single_proc_results!(order, args...)
end for

end function gsreg_single_proc_results!(args. . . )

3. function proc!(args. . . )
3.1. Create environment (Shared Array and other objects)
3.2. for workerID = 1 : nworkers

3.2.1 spawn jobs among workerIDs to perform
gsreg_proc_results!

end for
3.3. Perform vector operations
3.4. Call utils.jl sort function
3.5. Create results array
end function proc!(args. . . )

4. Export results using gsreg\_results.jl structure
5. Export summary results to a txt file
6. Optionally send the results structure to utils.jl to export a

csv file.

end module Core.jl.

3. Comparative performance against R and STATA
In table 1, we present a performance comparison of our GLob-
alSearchRegression Julia-package against its main alternatives:
MuMin-pdredge and GSREG (written in Stata1, espectively). Ex-
ecution times were obtained from a HED architecture using a
Threadripper 1950x build, with 16 cores (32 threads) overclocked
to 3.8GHz and 64 GiB of DDR4-RAM at 3200Mhz. Comparative
scripts were implemented on Julia 1.0.3, R 3.6.0 and Stata 15 IC,
running on Ubuntu 18.04.2 LTS -Linux kernel 4.15-2

For experimental -random variable- databases with a few covariates
-up to 15 explanatory variables-, our Julia algorithm only provides
significant time improvement in standard personal computers -e.g.
4 cores-, being up to twice faster than R and 4 times faster than
Stata. For HED computers or HPC nodes, there is almost no differ-
ence among the best result obtained for each alternative.

However, for databases with 20 or more covariates, our Julia all-
subset-regression code is always faster, irrespective of the number
of observations or threads -up to 3165 times faster than STATA

1The parallel version of Stata-GSREG is still under development. A pre-
liminary version is available upon request from authors
2All these test are available here
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Table 1. Average execution time and speed-up metrics -over 5 runs-
Cov. Obs Threads Execution time (in seconds) Parallel Speed-up Julia Speed-up

Julia R Stata Julia R Stata Over R Over Stata
15 100 1 14.0 69.1 646.6 1.0 1.0 1.0 4.9 46.2
15 100 4 17.0 33.4 80.3 0.8 2.1 8.0 2.0 4.7
15 100 16 22.0 23.6 22.1 0.6 2.9 29.2 1.1 1.0
15 100 32 31.4 22.3 15.1 0.4 3.1 43.0 0.7 0.5
15 1000 1 18.6 74.9 667.5 1.0 1.0 1.0 4.0 35.9
15 1000 4 18.5 35.3 81.6 1.0 2.1 8.2 1.9 4.4
15 1000 16 22.2 24.6 23.3 0.8 3.1 28.7 1.1 1.0
15 1000 32 31.5 21.5 16.0 0.6 3.5 41.6 0.7 0.5
15 10000 1 61.6 142.0 809.0 1.0 1.0 1.0 2.3 13.1
15 10000 4 30.5 61.4 114.7 2.0 2.3 7.1 2.0 3.8
15 10000 16 25.7 38.4 37.3 2.4 3.7 21.7 1.5 1.5
15 10000 32 33.4 35.5 26.7 1.8 4.0 30.3 1.1 0.8
20 100 1 169.2 10538.9 535693.2 1.0 1.0 1.0 62.3 3165.1
20 100 4 65.6 9275.4 75510.2 2.6 1.1 7.1 141.4 1151.1
20 100 16 44.7 8855.2 4526.3 3.8 1.2 118.4 197.9 101.2
20 100 32 51.2 8732.4 1658.2 3.3 1.2 323.0 170.7 32.4
20 1000 1 362.4 10765.9 1.0 1.0 29.7
20 1000 4 119.0 9352.3 3.0 1.2 78.6
20 1000 16 58.8 8926.4 6.2 1.2 151.8
20 1000 32 59.8 8753.9 6.1 1.2 146.4
20 10000 1 2338.4 13218.9 1.0 1.0 5.7
20 10000 4 629.4 10287.9 3.7 1.3 16.3
20 10000 16 198.6 9392.3 11.8 1.4 47.3
20 10000 32 149.5 9041.6 15.6 1.5 60.5
25 100 1 6700.7 1.0
25 100 4 1937.7 3.5
25 100 16 913.7 7.3
25 100 32 803.9 8.3
25 1000 1 14257.4 1.0
25 1000 4 3954.2 3.6
25 1000 16 1471.4 9.7
25 1000 32 1159.9 12.3
25 10000 1 93450.0 1.0
25 10000 4 23783.8 3.9
25 10000 16 6825.6 13.7
25 10000 32 4660.4 20.1

and 197 times faster than R-. Execution time differences exponen-
tially increase with the number of covariates and slightly decrease
with available observations. Moreover, Stata and R alternatives be-
come unfeasible for databases with 25 or more covariates. For a
confirmatory analysis, in figure 2 we present execution-time kernel
densities for the 20 covariates - 100 observations - 32 threads case,
obtained from 300 independent (non-cached) runs. Kernel density
results show that execution time differences are not an artifact ob-
tained from noisy runs. Our Julia algorithm is consistently faster
han R and Stata alternatives.

A detailed speed-up analysis is also available for the 25-covariate
case. In figure 3, it’s shown that our Julia all-subset-regression algo-
rithm scales almost linearly for large databases -while the number
of threads is not higher than the number of physical cores-. With
small databases, Amdhal’s law [6] inputs change. Parallel tasks be-
come lighter and speed-up efficiency degrades consistently with ad-
ditional threads, because the marginal overhead cost of a larger en-
vironment creation is not overcompensated by parallelism gains ob-
tained from additional threads. Notwithstanding, using only physi-
cal cores speed-up efficiency is always above 45% -with an average
of 84% for 2, 4, 8 and 16 threads-.

4. Why GlobalSearchRegression.jl is faster than
existing alternatives?

4.1 JULIA platform
Despite some GlobalSearchRegression.jl specific features to
be examined below, our all-subset-regression algorithm benefits
from the well-known Julia language efficiency for High Perfor-
mance Computing tasks.

Table 2. Julia speed-up over STATA and R in basic functions
Function Speed-up over R Speed-up over Stata

recursion_fibonacci 251.28 76.92
recursion_quicksort 32.36 48.54
matrix_multiply 11.6 14.07
iteration_pi_sum 14.33 26.89
matrix_statistics 7.65 44.92
parse_integers 28.4 49.38
userfunc_mandelbrot 175.44 368.42

Simple-Average 74.44 89.88
Weighted-Average 12.15 22.01

Note: Weighted-average were estimated as the Ratio between to-
tal execution time for R or Stata, and Julia’s total execution time
-for all basic functions-. Benchmarkings were obtained using a i7-
4700MQ quad-core build, with 8 GiB of DDR3 1600 Mhz RAM,
under Windows 8 and running Julia 1.1.0, Stata 15 and R 3.5.3.
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Fig. 2. Execution time, speed-up and speed-up efficiency for the 20-covariate case using GlobalSearchRegression.jl

Fig. 3. Execution time, speed-up and speed-up efficiency for the 25-covariate case using GlobalSearchRegression.jl

Julia JIT-compilation allows packages to run faster than those exe-
cuted using interpreted or byte-compiled languages (like R or Stata-
Mata). Indeed, basic functions running on Julia can be up to 251
and 368 times faster than those running in R and Stata, respectively
-with an average speed-up of 75 and 90, see Table 2-.

4.2 Parallel strategy and memory setup
It is well know that multicore architectures can be used to speed-
up execution times through two main paradigms: data and task-
parallelism [35]. The preferred strategy critically depends on:

(1) Database structure;
(2) Algorithm serial portion; and
(3) Interthread communication costs.

The first discussion is about tall vs fat data. While tall databases
are more suitable for data-parallelism [8], fat-structures improve
relative performance of task-parallelism (because tasks increase ex-
ponentially with covariates/columns in feature selection problems,
see [20]).

Additionally, the choice between alternative paradigms takes into
account the Amdahl’s Law for the specific algorithm to be used.
Task-parallelism is usually better for econometric and machine
learning algorithms requiring some specific serial optimization
paths (i.e. arima-arfima models), while data-parallelism performs
better under linear-algebra solutions (i.e. OLS-family estimators,
see [24]).

Finally, we have the problem of intercomunication costs. Data-
parallelism -generally- involves intense needs of inter-thread-

communication. While task-parallelism communication costs de-
pends on Load-Balancing choices (i.e. Dynamic vs Static), they are
usually lower than data-parallelism ones 3 [30].

For feature selection problems, pros and cons of alternative strate-
gies often determine that available cores should be used for task
parallelism. Databases are fat, data-mining algorithms can include
large serial portions, and intercomunication costs can be huge for
large-multicore architectures. These reasons explain why all avail-
able all-subset-regression packages use taks-parallism to speed-up
execution times.

As for the memory setup, there are also alternative methodologies.
First, it’s necessary to choose among Static vs. Dynamic memory
allocations [32]. To improve speed-up, Static "once-and-for-all" al-
locations are often preferred (even at a cost of higher average mem-
ory utilization). Second, shared-memory strategies must be deter-
mined. Depending on both object-size and CPU architecture -cache
size and its distribution among cores-, it could be optimal to use
large shared arrays or -alternatively- smaller core-specific objects.
Splitting output matrices to work with smaller non-shared arrays
could be useful for cache optimization purposes, but it could also
entail additional communication costs and higher memory require-
ments [5]. In practice, feature selection algorithms usually prefer
shared-arrays for high performance computing.

3At least when Static Load Balancing is implemented, because it allows for
Coarse-grained granularity [23]
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GlobalSearchRegression.jl (execution-time) advantages have
been obtained combining:

a) Task-parallelism
b) Static Load-Balancing
c) Coarse-grained granularity
d) Static memory allocation
e) Efficient shared-array implementation

While some of these characteristics are shared with R and Stata al-
ternatives (MuMin-pdredge and GSREG, respectively), our Static
Load-Balancing algorithm outperform the round-robin R schedul-
ing (implemented by the clusterapply function included in the
parallel R-package see [16]) and the Shared-Array strategy sig-
nificantly improves I/O performance against Stata. By construction,
pure Static Load-Balancing in GlobalSearchRegression.jl avoids
Round-Robin communication costs and execution gaps. This ad-
vantage overcompensate minimal4 load-asymmetries, associated
with any static scheduling. In turn, using efficient shared-arrays
to store all-subset-regression results allows us to outperform the
Stata-GSREG methodology which heavily relies on slower I/O
disk operations (because multiple instances must be launched to
enable task-parallelism and, therefore, shared-arrays become un-
feasible).

4.3 OLS estimation
Efficient Ordinary Least Squares (OLS) algorithms rely on Lin-
ear Algebra operations (matrix decomposition, matrix inversion,
etc.).5 The traditional (X ′X)−1 operation could be time-expensive
with unstable solutions under certain conditions [27]. A preferred
method is the QR-decomposition developed by Francis [21] and
Kublanovskaya [28]. The QR factorization allows us to decompose
any full rank N × p matrix X̄ as:

X = QR (1)

where

Q is a N × p matrix with Q′Q = I ; and
R a p× p upper triangular matrix.

The QR decomposition is fast and provides stable numerical so-
lutions under rank-deficient matrices. Alternative factorizations
are either slower (SVD decomposition) or potentially unstable
(Cholesky decomposition) [3].

GlobalSearchRegression.jl OLS estimation through QR-
decompositions outperform existing Julia alternatives (like
GLM.jl) allowing for large speed-ups compared with R-lm and
Stata-regress commands. Table 3 shows execution time differ-
ences for a 200 covariates - 1000 observations - multivariate linear
regression 6.

It must be notice that execution times are compilation-free, because
all-subset-regression algorithms must perform thousand to millions
of regressions where compilation time is absent (it only affects the
first regression).

4Minimal because our static scheduler guarantees that average task-
complexity will not be too different among workers
5Optimization alternatives (i.e. Gradient descent), while quite inefficient for
linear models, can also be used for non-linear estimations [1]
6Execution times were calculated for alternative OLS algorithms available
for all-subset-regression packages in Julia, and Stata.

Table 3. Execution times for different OLS algorithms in R, Stata and
Julia

GlobalSearchRegression.jl R-lm Stata-reg GLM.jl
Execution time 0.012 0.06 0.2 0.023

Speed-up 1 5 16.67 1.92
Note: Execution times were obtained using a i7-7500 dual-core build, with 8 GiB of DDR4
RAM, under Windows 10 and running Julia 1.1.0, Stata 13 and RStudio 3.6.0. Speed-ups
are obtaining dividing each execution time by the GlobalSearchRegression.jl execution time.

5. Conclusion

"There are a number of areas where there would
be opportunities for fruitful collaboration between
econometrics and machine learning [... and] the most
important area for collaboration involves causal in-
ference". [33]

As Hal Varian emphasizes, there is a need for mutual collabora-
tion between machine learning developers/practitioners and econo-
metricians. In this paper we describe a research-project aimed
at building bridges between machine learning and econometric
worlds (ModelSelection.jl)and introduce the main character-
istics of its first outcome: a Julia-native all-subset regression al-
gorithm (GlobalSearchRegression.jl) which runs up to 3165
and 197 times faster than existing Stata and R alternatives, respec-
tively.

Throughout the paper, it has been shown that execution-time
gains are explained by multiple efficient strategies combined in
GlobalSearchRegression.jl (i.e. task parallelism, static load-
balancing, coarse-grained granularity, static memory allocation, ef-
ficient shared array implementation, and OLS estimation using neat
QR decompositions). However, the main ’explanatory variable’ is
the impressive speed-up in atomic operations obtained using the
Julia language.

Notwithstanding, increasing availability of Big and -more
challenging- Fat-data, force us to go beyond pure all-subset-
regression approaches and combine it with machine learning fea-
ture selection algorithms. Work in progress include a new hybrid
package merging LASSO capabilities, all-subset-regression robust-
ness nd K-fold cross validation strengths.
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