
TSML (Time Series Machine Learning)
Paulito Palmes1, Joern Ploennigs1, and Niall Brady1

1IBM Dublin Research Lab

ABSTRACT
Over the past years, the industrial sector has seen many innovations
brought about by automation. Inherent in this automation is the in-
stallation of sensor networks for status monitoring and data collec-
tion. One of the major challenges in these data-rich environments
is how to extract and exploit information from these large volume
of data to detect anomalies, discover patterns to reduce downtimes
and manufacturing errors, reduce energy usage, predict faults/fail-
ures, effective maintenance schedules, etc. To address these issues,
we developed TSML. Its technology is based on using the pipeline
of lightweight filters as building blocks to process huge amount of
industrial time series data in parallel.

Keywords
Julia, Time Series, Machine Learning, Filters, Feature Extraction,
Classification, Prediction, Aggregation, Imputation

1. Introduction
TSML[5] is a Julia[1] package for time series data process-
ing, classification, and prediction. It provides common API for
ML (Machine Learning) libraries from Python’s Scikit-Learn, R’s
Caret, and native Julia MLs for seamless integration of heteroge-
neous libraries to create complex ensembles for robust time series
prediction, clustering, and classification. TSML has the following
features:

(1) data type clustering/classification for automatic data discovery
(2) aggregation based on date/time interval
(3) imputation based on symmetric Nearest Neighbors
(4) statistical metrics for data quality assessment and classification

input features
(5) ML wrapper with more than 100+ libraries from caret, scikit-

learn, and julia
(6) date/value matrix conversion of 1-D time series using sliding

windows to generate features for ML prediction
(7) pipeline API for high-level description of the processing work-

flow
(8) specific cleaning/normalization workflow based on data type
(9) automatic selection of optimised ML model
(10) automatic segmentation of time-series data into matrix form

for ML training and prediction
(11) extensible architecture using just two main interfaces: fit and

transform
(12) meta-ensembles for automatic feature and model selection
(13) support for distributed/threaded computation for scalability

and speed

The TSML package assumes a two-column input for any time se-
ries data composed of dates and values. The first part of the work-
flow aggregates values based on the specified date/time interval
which minimizes occurrence of missing values and noise. The ag-
gregated data is then left-joined to the complete sequence of dates
in a specified date/time interval. Remaining missing values are re-
placed by the median/mean or user-defined aggregation function of
the k-nearest neighbors (k-NN) where k is the symmetric distance
from the location of missing value. This approach can be called
several times until there are no more missing values.

For prediction tasks, TSML extracts the date features and convert
the value column into matrix form parameterized by the size and
stride of the sliding window. The final part joins the date features
and the value matrix to serve as input to the ML with the output
representing the values of the time periods to be predicted ahead of
time.

TSML uses a pipeline which iteratively calls the fit! and
transform! families of functions relying on multiple dispatch to
dynamically select the correct algorithm from the steps outlined
above. Machine learning functions in TSML are wrappers to the
corresponding Scikit-Learn, Caret, and native Julia ML libraries.
There are more than hundreds of classifiers and regression func-
tions available using TSML’s common API.

2. TSML Workflow
All major data processing types in TSML are subtypes of the
Transformer. There are two major types of transformers, namely:
filters for data processing and learners for machine learning. Both
transformers implement the fit! and transform! multi-dispatch
functions. All filters are direct subtypes of the Transformer while
all learners are subtypes of the TSLearner. The TSLearner is a
direct subtype of the Transformer.

Filters are normally used for pre-processing tasks such as imputa-
tion, normalization, feature extraction, feature transformation, scal-
ing, etc. Consequently, filters’ fit! and transform! functions ex-
pect one argument which represents an input data for feature extrac-
tion or transformation. Each data type must implement fit! and
transform! although in some cases, only transform! operation
is needed. For instance, square root or log filters do not require any
initial computation of parameters to transform their inputs. On the
other hand, feature transformations such as scaling, normalization,
PCA, ICA, etc. require initial computation of certain parameters in
their input before applying the transformation to new datasets. In
these cases, initial computations of these parameters are performed
by the fit! function while their applications to new datasets are
done by the transform! function.

1

Proceedings of JuliaCon 1(1), 2019

Learners, on the other hand, expect two arguments (input vs output)
and require training cycle to optimize their parameters for optimal
input–output mapping. The training part is handled by the fit!
function while the prediction part is handled by the transform!
function.

The TSML workflow borrows the idea of the Unix pipeline[3, 4].
The Pipeline data type is also a subtype of the Transformer and
expects two arguments: input and output. The main elements in a
TSML pipeline are series of transformers with each performing
one specific task and does it well. The series of filters are used to
perform pre-processing of the input while a machine learner at the
end of the pipeline is used to learn the input–output mapping. From
the perspective of using the Pipeline where the last component is
a machine learner, the fit! function is the training phase while the
transform! function is the prediction or classification phase.

The fit! function in the Pipeline iteratively calls the fit! and
transform! functions in a series of transformers. If the last trans-
former in the pipeline is a learner, the last transformed output from
a series of filters will be used as input features for the fit! or train-
ing phase of the said learner.

During the prediction task, the transform! function in the
Pipeline iteratively calls the transform! operations in each fil-
ter and learner. The transform operation is direct application of the
parameters computed during normalization, scaling, training, etc.
to the new data. If the last element in the pipeline during transform
is a learner, it performs prediction or classification. Otherwise, the
transform operation acts as a feature extractor if they are composed
of filters only.

To illustrate, below describes the main steps in using the TSML.
First, we create filters for csv reading, aggregation, imputation, and
data quality assessment.� �
fname = joinpath (dirname (pathof (TSML)),

" ../ data / testdata . csv ")
csvfilter = CSVDateValReader (Dict (

: filename => fname ,
: dateformat =>" dd / mm / yyyy HH : MM "))

valgator = DateValgator (Dict (
: dateinterval => Dates . Hour (1)))

valnner = DateValNNer (Dict (
: dateinterval => Dates . Hour (1)))

stfier = Statifier (Dict (: processmissing => true))� �
We can then setup a pipeline containing these filters to process the
csv data by aggregating the time series hourly and check the data
quality using the Statifier filter (Fig. 1).� �
apipeline = Pipeline (Dict (

: transformers => [csvfilter , valgator , stfier]))
fit !(apipeline)
mystats = transform !(apipeline)
@show mystats� �
A mentioned previously, the fit! and transform! in the pipeline
iteratively calls the corresponding fit! and transform! within
each filter. This common API relying on Julia’s multi-dispatch
mechanism greatly simplifies the implementations, operations, and
understanding of the entire workflow. In addition, extending TSML
functionality is just a matter of creating a new data type filter and
define its own fit! and transform! functions.

Fig. 1. Data Quality Statistics. Column names starting with ‘b‘ refer to
statistics of contiguous blocks of missing data.

In the Statifier filter result, blocks of missing data is indicated
by column names starting with b. Running the code indicates that
there are plenty of missing data blocks. We can add the ValNNer
filter to perform k-nearest neighbour (k-NN) imputation and check
the statistics (Fig. 2):� �
bpipeline = Pipeline (Dict (

: transformers => [csvfilter , valgator ,
valnner , stfier]))

fit !(bpipeline)
imputed = transform !(bpipeline)
@show imputed� �

Fig. 2. Statistics after Imputation. All statistics for blocks of missing data
indicate NaN to indicate the stats of empty set. This implies that all missing
blocks are imputed.

The result in Fig. 2 indicates NaN for all missing data statistics
column because the set of missing blocks count is now empty.

We can also visualise our time series data using the Plotter filter
instead of the Statifier as shown in Fig 3. Looking closely, you
will see discontinuities in the plot due to blocks of missing data.� �
pltr = Plotter (Dict (: interactive => true))
plpipeline = Pipeline (Dict (

: transformers => [csvfilter , valgator , pltr]))
fit !(plpipeline)
transform !(plpipeline)� �
Using the imputation pipeline described before, we can visualise
the result by replacing the Statifier with the Plotter filter. Fig-
ure 4 shows the plot after imputation which gets rid of missing data.� �
bplpipeline = Pipeline (Dict (

: transformers => [csvfilter , valgator ,
valnner , pltr]))

fit !(bplpipeline)
transform !(bplpipeline)� �
2.1 Processing Monotonic Time Series
This subsection dicusses additional filters to handle monotonic data
which are commonly employed in energy/water meter and footfall

2

Proceedings of JuliaCon 1(1), 2019

Fig. 3. Plot with Missing Data

Fig. 4. Plot after Data Imputation

sensors. In the former case, the time series type is strictly monoton-
ically increasing while in the latter case, the monotonicity happens
daily. We use the filter called Monotonicer which automatically
detects these two types of monotonic sensors and apply the nor-
malisation accordingly.� �
mono = joinpath (dirname (pathof (TSML)),

" ../ data / typedetection / monotonic . csv ")
monocsv = CSVDateValReader (Dict (: filename => mono ,

: dateformat =>" dd / mm / yyyy HH : MM "))� �
Let us plot in Fig. 5 the monotonic data with the usual workflow of
aggregating and imputing the data first.� �
monopipeline = Pipeline (Dict (

: transformers => [monofilecsv , valgator ,
valnner , pltr]))

fit !(monopipeline)
transform !(monopipeline)� �
Let us now normalise using Monotonicer and show the plot in
Fig. 6.� �
mononicer = Monotonicer (Dict ())
monopipeline = Pipeline (Dict (

: transformers => [monofilecsv , valgator , valnner ,
mononicer , pltr]))

fit !(monopipeline)

Fig. 5. Monotonic Time Series

transform !(monopipeline)� �

Fig. 6. Normalized Monotonic Time Series

The presence of outlier due to some random errors during me-
ter reading becomes obvious after the normalisation. To remedy
this issue, we add the Outliernicer filter which detects outliers
and replace them using the k-NN imputation technique used by the
DateValNNer filter (Fig. 7).� �
outliernicer = Outliernicer (

Dict (: dateinterval => Dates . Hour (1)))
monopipeline = Pipeline (Dict (

: transformers => [monofilecsv , valgator , valnner ,
mononicer , outliernicer , pltr]))

fit !(monopipeline)
transform !(monopipeline)� �
2.2 Processing Daily Monotonic Time Series
We follow similar workflow in the previous subsection to normalize
daily monotonic time series. First, let us visualize the original data
after aggregation and imputation (Fig. 8).� �
dailymono = joinpath (dirname (pathof (TSML)),

" ../ data / type - detection / dailymonotonic . csv ")
dailymonocsv = CSVDateValReader (Dict (

: filename => dailymono ,
: dateformat =>" dd / mm / yyyy HH : MM "))

dailymonopipeline = Pipeline (Dict (

3

Proceedings of JuliaCon 1(1), 2019

Fig. 7. Normalized Monotonic Time Series With Outlier Removal Filter

: transformers => [dailymonocsv , valgator ,
valnner , pltr]))

fit !(dailymonopipeline)
transform !(dailymonopipeline)� �

Fig. 8. Daily Monotonic Time Series

Then, we reuse the Monotonicer filter in the previous subsection
to normalise the data and plot (Fig. 9).� �
dailymonopipeline = Pipeline (Dict (

: transformers => [dailymonocsv , valgator ,
valnner , mononicer , pltr]))

fit !(dailymonopipeline)
transform !(dailymonopipeline)� �
To remove outliers, we can reuse the Outliernicer filter in the
previous subsection and plot the cleaned data (Fig. 10).� �
dailymonopipeline = Pipeline (Dict (

: transformers =>[dailymonocsv , valgator , valnner ,
mononicer , outliernicer , pltr]))

fit !(dailymonopipeline)
transform !(dailymonopipeline)� �

Fig. 9. Normalized Daily Monotonic Time Series

Fig. 10. Normalized Daily Monotonic Time Series with Outlier Detector

3. Time Series Classification
We can use the knowledge we learned in setting up the TSML
pipeline containing filters and machine learners to build higher
level operations to solve a specific industrial problem. One ma-
jor problem which we consider relevant because it is a common
issue in IOT (Internet of Things) is the time series classification.
This problem is prevalent nowadays due to the increasing need to
use many sensors to monitor status in different aspects of industrial
operations and maintenance of cars, buildings, hospitals, supermar-
kets, homes, and cities.

Rapid deployment of these sensors result to many of them not prop-
erly labeled or classified. Time series classification is a significant
first step for optimal prediction and anomaly detection. Identify-
ing the correct sensor data types can help in the choice of what the
most optimal prediction model to use for actuation or pre-emption
to minimise wastage in resource utilisation. To successfully per-
form the latter operations, it is necessary to identify first the time
series type so that appropriate model and cleaning routines can be
selected for optimal model performance. The TSClassifier filter
aims to address this problem and its usage is described below.

First, we setup the locations of files for training, testing, and saving
the model. Next, we start the training phase by calling fit! which
loads file in the training directory and learn the mapping between
their statistic features extracted by Statifier with their types in-
dicated by a substring in their filenames. Once the training is done,

4

Proceedings of JuliaCon 1(1), 2019

the final model is saved in the model directory which will be used
for testing accuracy and classifying new time series datasets.

The code below initialises the TSClassifier with the locations
of the training, testing, and model repository. Training is carried
out by the fit! function which extracts the stat features of the
training data and save them as a dataframe to be processed by the
RandomForest classifier. The trained model is saved in the model
directory and used during testing.� �
trdirname = joinpath (dirname (pathof (TSML)),

" ../ data / realdatatsclassification / training ")
tstdirname = joinpath (dirname (pathof (TSML)),

" ../ data / realdatatsclassification / testing ")
modeldirname = joinpath (dirname (pathof (TSML)),

" ../ data / realdatatsclassification / model ")
tscl = TSClassifier (Dict (

: trdirectory => trdirname ,
: tstdirectory => tstdirname ,
: modeldirectory => modeldirname ,
: num_trees => 75)

)
fit !(tscl)
predictions = transform !(tscl)
@show testingAccuracy (predictions)� �
Figure 11 shows: a) a snapshot of the output during training and
testing which extracts the statistical features of the time series; and
b) the testing performance of the classifier. The training and testing
data are labeled based on their sensor type for easier validation.
The labels are not used as input during training. The classification
workflow is purely driven by the statistical features. The prediction
indicates 80% accuracy.

..........

..........

Fig. 11. Extraction of Statistical Features for Training and Prediction. By
convention, the TSClassifier validates the ground truth based on the file-
name which contains the label of the sensor type disregarding the numerical
component.

4. Extending TSML with Scikit-Learn and Caret
In the latest TSML version (2.3.4 and above), we refactored the
base TSML to only include pure Julia code implementations
and moved the external libs and binary dependencies into the
TSMLextra package. One major reason is to have a smaller code
base so that it can be easily maintained and rapidly deployed in
a dockerized solution for Kubernetes or IBM’s OpenShift cluster.

Moreover, smaller codes make static compilation fast for smaller
docker image in cloud deployment.

There are cases where the main task of time series classification re-
quires more complex ensemble model using hierarchy or tree struc-
ture where members are composed of heterogeneous ML learners
derived from binaries in different languages. For illustration pur-
poses, we will show how to ensemble ML libraries from Scikit-
Learn and Caret using TSML meta-ensembles that support the
fit! and transform! APIs.

4.1 Parallel TSML Using Distributed Workflow
We will use Julia’s built-in support for parallelism by using the
Distributed standard library. We also let Julia detect the number
of processors available and activate them using the following state-
ments:� �
using Distributed
nprocs () == 1 && addprocs ()� �
With several workers active, we use the @everywhere macro to load
the necessary filters and transformers to all workers.� �
@everywhere using TSML
@everywhere using TSMLextra
@everywhere using DataFrames
@everywhere using Random
@everywhere using Statistics
@everywhere using StatsBase : iqr
@everywhere using RDatasets� �
With all the necessary TSML functions loaded, we can now setup
the different MLs starting with some learners from Caret and
Scikit-Learn. The list is not exhaustive for demonstration purposes.� �
Caret ML
@everywhere caret_svmlinear =

CaretLearner (Dict (: learner =>" svmLinear "))
@everywhere caret_treebag =

CaretLearner (Dict (: learner =>" treebag "))

Scikit - Learn ML
@everywhere sk_knn =

SKLearner (Dict (: learner =>" KNeighborsClassifier "))
@everywhere sk_gb =

SKLearner (Dict (: learner =>
" GradientBoostingClassifier ",
: impl_args => Dict (: n_estimators => 10)))

@everywhere sk_extratree =
SKLearner (Dict (: learner =>" ExtraTreesClassifier ",

: impl_args => Dict (: n_estimators => 10)))
@everywhere sk_rf =

SKLearner (Dict (: learner =>
" RandomForestClassifier ",
: impl_args => Dict (: n_estimators => 10)))� �

Let us setup ML instances from a pure Julia implementation of
learners and ensembles wrapped from the DecisionTree.jl package
[7, 3, 4, 6].� �
Julia ML
@everywhere jrf = RandomForest ()
@everywhere jpt = PrunedTree ()
@everywhere jada = Adaboost ()

5

Proceedings of JuliaCon 1(1), 2019

Julia Ensembles
@everywhere jvote_ens = VoteEnsemble (Dict (

: learners =>[jrf , jpt , sk_gb , sk_extratree , sk_rf]))
@everywhere jstack_ens = StackEnsemble (Dict (

: learners =>[jrf , jpt , sk_gb , sk_extratree , sk_rf]))
@everywhere jbest_ens = BestLearner (Dict (

: learners =>[jrf , sk_gb , sk_rf]))
@everywhere jsuper_ens = VoteEnsemble (Dict (

: learners =>[jvote_ens , jstack_ens ,
jbest_ens , sk_rf , sk_gb]))� �

Next, we setup the pipeline for training and prediction.� �
@everywhere function predict (learner ,

data , train_ind , test_ind)
features = convert (Matrix , data [:, 1:(end -1)])
labels = convert (Array , data [:, end])
Create pipeline
pipeline = Pipeline (

Dict (
: transformers => [

OneHotEncoder (), # nominal to bits
Imputer (), # Imputes NA values
StandardScaler (), # normalize
learner # Predicts labels on instances

]
)

)
Train
fit !(pipeline , features [train_ind , :],

labels [train_ind])
Predict
predictions = transform !(pipeline ,

features [test_ind , :])
Assess predictions
result = score (: accuracy ,

labels [test_ind], predictions)
return result

end� �
Finally, we setup the parallelmodel function to run different
learners distributed to different workers running in parallel rely-
ing on Julia’s native support of parallelism. Take note that there
are two parallelisms in the code. The first one is the distribution of
task in different trials and the second one is the distribution of tasks
among different models for each trial. It is interesting to note that
with this relative compact function definition, the Julia language
makes it easy to define a parallel task within another parallel task
in a straightforward manner without any problem.� �
function parallelmodel (learners :: Dict ,

data :: DataFrame ; trials =5)
models = collect (keys (learners))
ctable = @distributed (vcat) for i=1: trials

Split into training and test sets
Random . seed !(3i)
(trndx , tstndx) = holdout (size (data , 1), 0 .2 0)
acc = @distributed (vcat) for model in models

res = predict (learners [model],
data , trndx , tstndx)

println (" trial ",i," , ", model ," => ",
round (res))

[model res i]
end
acc

end
df = ctable |> DataFrame
rename !(df ,: x1 =>: model ,: x2 =>: acc ,: x3 =>: trial)
gp = by (df ,: model) do x

DataFrame (mean = mean (x. acc), std = std (x. acc),

n= length (x. acc))
end
sort !(gp ,: mean , rev = true)
return gp

end� �
We benchmark the performance of the different machine learners
by creating a dictionary of workers containing instances of learners
from Caret, Scikit-Learn, and Julia libraries. We pass the dictionary
of learners to the parallelmodel function for evaluation.� �
learners = Dict (

: jvote_ens => jvote_ens ,: jstack_ens => jstack_ens ,
: jbest_ens => jbest_ens ,: jrf => jrf ,: jada => jada ,
: jsuper_ens => jsuper_ens ,
: crt_svmlinear => caret_svmlinear ,
: crt_treebag => caret_treebag ,
: skl_knn => sk_knn ,: skl_gb => sk_gb ,
: skl_extratree => sk_extratree , : sk_rf => sk_rf

)

datadir = joinpath (" tsdata /")
tsdata = extract_features_from_timeseries (datadir)
first (tsdata ,5)

respar = parallelmodel (learners , tsdata ; trials =3)� �

Fig. 12. Output During Training with Several Workers

Fig. 13. @distributed: Classification Performance in 3 Trials

The data used in the experiment are sample snapshots of the
data in our building operations. For reproducibility, the data can
be found in the juliacon2019-paper branch of TSML in Github:
/data/benchmark/tsclassifier. There are four time series types,

6

Proceedings of JuliaCon 1(1), 2019

namely: AirOffTemp, Energy, Pressure, and RetTemp. We took a
minimal number of samples and classes for the sake of discussion
and demonstration purposes in this paper.

Figures 12 and 13 show a snapshot of running workers exploiting
the distributed library of Julia and the classification performance of
each model, respectively. There are 8 workers running in parallel
over 12 different machine learning classifiers.

From the results, ExtraTree from Scikit-Learn has the best perfor-
mance with 91.67% accuracy followed by TreeBag and SVMLinear
from Caret library with 83.33 % accuracy for both. With this work-
flow, it becomes trivial to search for optimal model by running them
in parallel relying on Julia to do the low-level tasks of scheduling
and queueing as well as making sure that the dynamically avail-
able compute resources such as cpu cores and memory resources
are fairly optimised.

4.2 Parallel TSML Using Threads Workflow
With Julia 1.3, lightweight multi-threading support in Julia be-
comes possible. We will be using the pure Julia-written ML mod-
els because installing external dependencies such as Caret MLs
through RCall package has some issues with the alpha version of
Julia 1.3 at this point in time. We will update this documentation
and add more MLs once the issues are resolved.

The main difference in the workflow between Julia’s distributed
computation model compared to the threaded model is the pres-
ence of @everywhere macro in the former for each function de-
fined to indicate that these function definitions shall be exported
to all running workers. Since threaded processes share the same
memory model with the Julia main process, there is no need for
this macro. Instead, threading workflow requires the use of Reen-
trantLock in the update of the global dataframe that accumulates
the prediction performance of models running in their respective
threads. In similar observation with the distributed framework, the
threadedmodel function contains two parallelism: threads in dif-
ferent trials and threads among models in each trial. The function
is surprisingly compact to implement threads within threads with-
out issues and the main bottleneck happens only during the update
operation of the global ctable dataframe.� �
function threadedmodel (learners :: Dict ,

data :: DataFrame ; trials =5)
Random . seed !(3)
models = collect (keys (learners))
global ctable = DataFrame ()
@threads for i=1: trials

Split into training and test sets
(train_ind , test_ind) =

holdout (size (data , 1), 0 .2 0)
mtx = SpinLock ()
@threads for themodel in models

res = predict (learners [themodel],
data , train_ind , test_ind)

println (themodel ," => ", round (res)," ,
thread =", threadid ())

lock (mtx)
global ctable = vcat (ctable ,

DataFrame (model = themodel , acc = res))
unlock (mtx)

end
end

df = ctable |> DataFrame
gp = by (df ,: model) do x

DataFrame (mean = mean (x. acc),
std = std (x. acc),n= nrow (x))

end

sort !(gp ,: mean , rev = true)
return gp

end� �
Let us define a set of learners that are written in pure Julia for this
thread experiment.� �
Julia ML
jrf = RandomForest (Dict (: impl_args =>

Dict (: num_trees => 500)))
jpt = PrunedTree ()
jada = Adaboost (Dict (: impl_args =>

Dict (: num_iterations => 20)))

Julia Ensembles
jvote_ens = VoteEnsemble (Dict (: learners =>

[jrf , jpt , jada]))
jstack_ens = StackEnsemble (Dict (: learners =>

[jrf , jpt , jada]))
jbest_ens = BestLearner (Dict (: learners =>

[jrf , jpt , jada]))
jsuper_ens = VoteEnsemble (Dict (: learners =>

[jvote_ens , jstack_ens , jbest_ens]));� �
Let us run in parallel the different models using the same dataset
with that of the distributed workflow.� �
using Base . Threads

learners = Dict (
: jvote_ens => jvote_ens ,
: jstack_ens => jstack_ens ,
: jbest_ens => jbest_ens ,
: jrf => jrf ,: jada => jada ,
: jsuper_ens => jsuper_ens);

datadir = joinpath (" tsdata /")
tsdata = extract_features_from_timeseries (datadir)

resthr = threadedmodel (learners , tsdata ; trials = 10)� �

Fig. 14. Output During Training Using Several Threads

Figures 14 and 15 show example snapshot of the running threads
and the final result of classification, respectively. In this experi-
ment, Adaboost has 85.0% accuracy followed by Random Forest
with 82.5% accuracy.

7

Proceedings of JuliaCon 1(1), 2019

Fig. 15. @threads: Classification Performance in 10 Trials

5. Applications Using Public IoT Datasets
This section summarizes the results of applying the TSML
workflow for classification tasks using data in this site:
http://www.timeseriesclassification.com/. Among the hundreds of
datasets available, we handpicked only 4 datasets, namely: Elec-
tricDevices, RefrigerationDevices, FordB, and Earthquakes.

ElectricDevices dataset covers 251 households, sampled in 2-
minute intervals over a month. The target is to collect how con-
sumers use electricity within the home based on the devices they
use at a particular time of the day. The dataset is highly imbalanced
with the following total count in each class, repectively: 1394,
4187, 1606, 2639, 4275, 1252, 1284. This dataset is a good test on
the robustness of the classifier to handle bias during training. The
class distribution in training is consist of: 727, 2231, 851, 1471,
2406, 509, 728. For testing, the class distribution is: 667, 1956,
755, 1165, 1869, 743, 556. Using this highly imbalanced dataset is
a good way to determine which among the classifiers has the best
method to deal with this sampling bias. There are 96 input features
and 6 output classes in a total of 16637 samples.

RefrigerationDevices dataset is based on similar study with that of
ElectricalDevices dataset. The dataset uses the same set of house-
holds and sampling protocol for gathering electric consumption
data from three types of refrigeration devices: Fridge/Freezer, Re-
frigerator, Upright Freezer. Unlike in ElectricDevices, the class dis-
tribution in RefrigerationDevices are balanced, i.e., 250 for each
class in training and 125 for each class during testing. There are
720 input features and 3 output classes in a total of 750 samples.

The Earthquakes classification problem requires predicting
whether a major event is about to occur based on the most re-
cent readings in the surrounding area. The data is aggregated hourly
with the Rictor scale reading over 5 indicating a major event. There
are 368 negative cases versus 93 positive cases of major events.
This dataset is highly imbalanced in class distribution which makes
predicting whether a major event occurs very problematic. The
training set is composed of 264 negative examples and only 58
positive examples. The testing data is composed of 104 negative
cases and only 35 positive cases. There are 512 input features and
2 output classes in a total of 461 samples. The highly imbalanced
distribution of this dataset will provide a good way to determine
which among the classifiers are robust to deal with this bias.

FordB dataset is a classification problem to diagnose whether a cer-
tain symptom exists in an automative system. There are 500 mea-
surements of engine noise. The training data were collected in typ-
ical operating conditions while the test data were collected under
noisy conditions. The dataset is slightly imbalanced consisting of
1860 class1 vs 1776 class2 in training while 401 class1 and 409

Table 1. Classification Problems
Problem Classes Imbalance Dimension

Electric Devices 6 Y 16637 x 96
Refrigeration Devices 3 N 750 x 720

Earthquakes 2 Y 461 x 512
FordB 2 N 4446 x 500

Table 2. Electric Devices
Model MeanFscore Std Trials

c-rf 0.56 0.00 10
c-treebag 0.54 0.01 10

s-extratree 0.52 0.01 10
j-vote 0.51 0.01 10

j-rf 0.51 0.01 10
...

Table 3. Refrigeration Devices
Model MeanFscore Std Trials

s-gb 0.51 0.00 10
c-rf 0.51 0.01 10

c-treebag 0.50 0.01 10
j-super 0.50 0.02 10

s-rf 0.48 0.03 10
...

class2 in testing. There are 500 input features and 2 output classes
in a total of 4446 samples.

Table 1 summarizes the differences and similarities among the
different classification problems under consideration. Two of the
problems have highly imbalanced dataset, namely: Electric Devices
and Earthquakes. Both FordB and Refrigeration Devices have no or
slightly less imbalanced data.

One thing to note is that the Refrigeration dataset has almost the
same number of features with its total number of samples. We ex-
pect that this will result into a much harder classification problem
eventhough it does not suffer from imbalanced class distribution.
Ideally, there must be more samples than features in order for the
classifier to properly extract the correct subset of features for robust
classification.

5.1 Results
Due to the data imbalance, the typical accuracy measurement will
not be able to capture the performance of the algorithms because its
value may be overshadowed by the dominant class. In this regard,
we use F-score to measure the performance of a given classifier to
each of its classes and get the mean of these F-scores.

Table 2 shows the top 5 performing classifiers together with the
2 worst performing classifiers. The first letter of each classi-
fier’s name indicates whether the classifier comes from (c)aret,
(s)cikitLearn, or (j)ulia. The table indicates that Random Forest and
TreeBag from Caret performed the best followed by ExtraTree of
ScikitLearn. Julia’s Vote ensemble and Random Forest complete the
top 5. On the other hand, Julia’s Adaboost and Caret’s RPart are the
worst classifiers for this problem.

Using similar naming convention, Table 3 indicates that Gradient-
Boost from ScikitLearn and Random Forest from Caret are the best
classifiers for the Refrigeration Devices problem. The two worst
algorithms are the same as in Table 2.

8

Proceedings of JuliaCon 1(1), 2019

Table 4. Earthquakes
Model MeanFscore Std Trials

c-treebag 0.86 0.01 10
c-rf 0.86 0.00 10

c-rpart 0.86 0.00 10
s-extratree 0.85 0.01 10

s-gb 0.85 0.00 10
...

Table 5. FordB
Model MeanFscore Std Trials

c-rf 0.66 0.01 10
s-knn 0.62 0.00 10
j-vote 0.61 0.01 10

j-rf 0.61 0.01 10
j-super 0.60 0.03 10

...

For Earthquakes classification problem (Table 4), the top 3 best
classifiers are dominated by those from Caret library, namely: Tree-
Bag, Random Forest, and RPart. The worst performers are from
Caret’s SVMLinear and Julia’s PartitionTree.

For the FordB dataset (Table 5), the best performers are: Random
Forest from Caret, k-NN from ScikitLearn, and Vote Ensemble from
Julia. The worst performers are similar to Tables 2 and 3.

5.2 Discussion
Comparing the performances of different classifiers among the four
problems indicate that the most difficult problem to classify is
the Refrigeration Devices while the easiest one is the Earthquakes
problem. As we expected, there is no enough sample for the clas-
sifiers to learn the mapping in Refrigeration dataset relative to its
feature dimension. One way to alleviate this problem is to remove
features that are highly correlated or perform PCA to reduce the
feature dimension. This is beyond the scope of the current paper
which focuses mainly on the applicability of TSML MLs to differ-
ent set of problems.

Among the classifiers, the Random Forest from Caret is the top
performer in all problems. On the other hand, TreeBag from Caret
and Gradient Boosting from ScikitLearn are the top performers in
Refrigeration Devices and Earthquakes, respectively. It is interest-
ing to note that among the Random Forest implementations, the top
performer is the Caret’s version written by Breiman[2] who was
the original author of the said algorithm in Fortran. The superior
performance of Breiman’s Random Forest can be highlighted in
the FordB classification performance. kNN, the next best classifier
is 4% lower than Breiman’s Random Forest. In all other cases, the
next best performer has almost same performance with Breiman’s
Random Forest.

As we expected based on past studies, the different ensemble mod-
els dominated the top 5 performers. While not shown in the table,
the most consistent worst performer is the Caret’s RPart. This is
consistent to Breiman’s observation that Random Forest performs
well by using unstable or inferior ML models in its leaves. In
Caret’s Random Forest, the leaves are composed of RPart models
which has the poorest performance in all problems. The combina-
tion of boosting and bagging weak learners such as RPart make the
Random Forest robust from datasets imbalances.

6. Summary and Conclusion
Packages for time series analysis are becoming important tools with
the rapid proliferation of sensor data brought about by IoT. We
created TSML as a time series machine learning framework which
can easily be extended to handle large volume of time series data.
TSML exploits the following Julia features: multiple dispatch, type
inference, custom data types and abstraction, and parallel compu-
tations.

TSML main strength is the adoption of UNIX pipeline architec-
ture containing filters and machine learners to perform both pre-
processing and modelling tasks. In addition, TSML uses a common
machine learning API for both internal and external ML libraries,
distributed and threaded support for modeling, and a growing col-
lection of filters for preprocessing, classification, clustering, and
prediction.

Extending TSML can easily be done by creating a custom data type
filter and defining its corresponding fit! and transform! oper-
ations which the TSML pipeline iteratively calls for each trans-
former in the workflow.

7. References
[1] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B

Shah. Julia: A fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017.

[2] Leo Breiman. Random forests. Machine Learning, 45(1):5–32,
Oct 2001.

[3] S. Jenkins. Orchestra: Heterogeneous ensemble learning for ju-
lia. https://github.com/svs14/Orchestra.jl, 2014.

[4] P. Palmes. CombineML: A package to create heterogeneous
ensembles of ML from ScikitLearn, Caret, and Julia. https:
//github.com/ppalmes/CombineML.jl, 2016.

[5] P. Palmes. TSML: Time series machine learning. https://
github.com/IBM/TSML.jl, 2019.

[6] P. Palmes. TSMLextra: External machine learning libs for tsml.
https://github.com/ppalmes/TSMLextra.jl, 2019.

[7] B Sadeghi and L.P. Coelho. Decisiontree: Julia implementa-
tion of decision tree and random forest algorithms. https:
//github.com/bensadeghi/DecisionTree.jl, 2019.

9

https://github.com/svs14/Orchestra.jl
https://github.com/ppalmes/CombineML.jl
https://github.com/ppalmes/CombineML.jl
https://github.com/IBM/TSML.jl
https://github.com/IBM/TSML.jl
https://github.com/ppalmes/TSMLextra.jl
https://github.com/bensadeghi/DecisionTree.jl
https://github.com/bensadeghi/DecisionTree.jl

	Introduction
	TSML Workflow
	Processing Monotonic Time Series
	Processing Daily Monotonic Time Series

	Time Series Classification
	Extending TSML with Scikit-Learn and Caret
	Parallel TSML Using Distributed Workflow
	Parallel TSML Using Threads Workflow

	Applications Using Public IoT Datasets
	Results
	Discussion

	Summary and Conclusion
	References

