
Modia3D: Modeling and Simulation of 3D-Systems in Julia
Andrea Neumayr1 and Martin Otter1

1DLR, Institute of System Dynamics and Control, Germany

ABSTRACT
Modia3D is an experimental Julia package to model and simulate
3D mechanical systems. Ideas from modern game engines are used
to achieve a highly flexible setup and features of multi-body algo-
rithms are used to get a rigid mathematical formulation and sup-
port, for example, of closed kinematic loops. Collision handling is
performed on convex geometries with elastic response calculation.
A Modia3D model is solved with a variable-step solver. This is
important to combine Modia3D with the equation-based modeling
system Modia in the future.

Keywords
Julia, Modia, Modia3D, Modelica, collision handling, Minkowski
Portal Refinement algorithm, component-based modeling, elastic
force law, response calculation

1. Introduction
The open source Modia prototype platform, see table 1, consists of
various packages based on the Julia programming language [3] to
model and simulate physical systems described by differential and
algebraic equations. The goal is to simulate, e.g. robots, vehicles,
aircraft, buildings or power plants, and to experiment with novel
features for the next Modelica© language generation1.
Modia3D2 is an experimental modeling and simulation environ-
ment to provide 3D geometry and 3D mechanical systems for
the Modia platform. The goal is to fully integrate Modia3D with
Modia’s equation-based modeling and provide a common graphi-
cal user interface with the web app Modiator. This will allow to
model, for example, the 3D-mechanics of a robot with Modia3D
and the electrical motors, gear boxes, sensors and controllers with
Modia. One enhancement with respect to the widely-used Modelica
language will be that specialized algorithms for 3D kinematics and
mechanics, combined with equation-based modeling, allows more
robust and efficient simulations of complex systems.
Modia3D uses ideas of modern computer game engines3, to achieve
a highly flexible setup of mechanical systems including collision
handling. Contrary to game engines, numerical integration is per-
formed with a variable-step solver (IDA via the Sundials.jl Julia
package [9, 16]) as needed for applications where system simula-
tions have to match reality with a certain precision. In Modia3D,
collision handling is performed with elastic response calculation
and not with impulses, as it is common for game engines. The rea-
son is that simulation results are closer to reality and it is easier to

1https://www.modelica.org/modelicalanguage
2https://github.com/ModiaSim/Modia3D.jl
3https://en.wikipedia.org/wiki/List_of_game_engines

Table 1. Julia packages of the Modia platform (github.com/ModiaSim).
Modia Equation-based modeling of physical systems
Modiator 2D and 3D web app model editor (not yet public)
ModiaMath Simulation environment for differential-algebraic equations
Modia3D 3D geometries and 3D mechanics with collision handling
ModiaMedia Thermodynamic property models
Modelia Modelica model importer (not yet public)

treat complex contact situations correctly. For example, it is hard to
model situations with impulses in a physically correct way if com-
bined effects such as rolling, sliding, friction and collisions with
several bodies occur at the same time instant.
Modia3D uses algorithms and features from multi-body programs4

such as rigid mathematical formulation with hybrid DAEs (Differ-
ential Algebraic Equations), for example, to describe closed kine-
matic loops, whereas game engines often make compromises here.
On the other hand, multi-body programs are usually far from the
flexible setup of games (see also section 2).
Modia3D provides a generic interface to visualize simulation re-
sults with different 3D renderers. Currently, the free community
edition as well as the professional edition5 of the DLR Visualization
library6 [1, 8] are supported. Another team is developing Modiator,
a free 2D/3D web-based authoring and rendering tool.
The user’s view of Modia3D was introduced in [12] showing the
very flexible definition of 3D systems. Some key algorithms are dis-
cussed in [11, 13]. Collision handling with elastic response calcu-
lation and error controlled integration is challenging and this article
discusses some of the difficulties and how they are solved. Further,
it gives an overview of Modia3D from a user’s perspective, and in
particular how collisions between objects are defined.

2. Flexible Definition of 3D Systems
Modia3D follows the approach of modern game engines to provide
a coordinate system as a primitive that is located in 3D and has a
container with optional components (such as geometry, visualiza-
tion, dynamics, collision properties, light, camera, sound, etc.), see
for example [14]7.8 Such types of objects are called GameObject9

in Unity, Actor10 in Unreal Engine, and Object3D11 in Three.js. In
Modia3D the name Object3D is used. This very flexible approach
allows to define many optional components and variants and treat

4http://real.uwaterloo.ca/mbody/#Software
5https://visualization.ltx.de/
6http://www.systemcontrolinnovationlab.de/the-dlr-visualization-library/
7http://gameprogrammingpatterns.com/component.html
8This section utilizes some descriptions, figures and Julia code from [12].
9https://docs.unity3d.com/Manual/GameObjects.html
10https://docs.unrealengine.com/en-us/Engine/Components
11https://threejs.org/docs/index.html#api/core/Object3D

1

https://www.modelica.org/modelicalanguage
https://github.com/ModiaSim/Modia3D.jl
https://en.wikipedia.org/wiki/List_of_game_engines
https://github.com/ModiaSim
http://real.uwaterloo.ca/~mbody/#Software
https://visualization.ltx.de/
http://www.systemcontrolinnovationlab.de/the-dlr-visualization-library/
http://gameprogrammingpatterns.com/component.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unrealengine.com/en-us/Engine/Components
https://threejs.org/docs/index.html#api/core/Object3D

Proceedings of JuliaCon 1(1), 2019

them in a modular way. The Julia programming language is par-
ticularly suited for this component-oriented programming pattern
and therefore key-concepts of Julia, such as multiple dispatch, are
heavily used in Modia3D.
Hierarchical structuring for grouping and aggregation is performed
with the Modia3D macro @assembly. Julia macros are metapro-
gramming12 language elements and a macro name starts with @. It
generates an abstract syntax tree (AST) of Julia code which is au-
tomatically compiled and executed at the line where the macro is
called. Fig. 1 shows a bar that is constructed from several Object3D
elements and is defined with the following Julia code:� �
@assembly Bar (; Lx =0 .1 , Ly = Lx /5, Lz = Ly) begin

obj0 = Object3D (Solid (SolidBeam (Lx , Ly , Lz),
" Aluminium ", Material (color =" Blue "))

obj1 = Object3D (obj0 ,r=[- Lx /2,0 .0 ,0 .0])
obj2 = Object3D (obj0 ,r=[Lx /2,0 .0 ,0 .0])

end� �
[Lx/2,0,0][-Lx/2,0,0]

obj0obj1 obj2

Fig. 1. A solid bar with two additional Object3Ds.

rev1 rev4

rev3rev2 bar2

bar3

world

ground

bar1

Fig. 2. Planar four-bar mechanism.

The first Object3D is a SolidBeam geometry that is made of alu-
minium and is visualized in blue color. Mass, center of mass and
inertia matrix are computed internally from this information. The
next two objects place coordinate systems on the first object. Three
instances of the Bar assembly together with a ground object (= the
fourth bar) are used to build up the four-bar mechanism13 shown
in Fig. 2. The Julia code of this mechanism is shown in the next
listing:� �
@assembly Fourbar (; Lx =0 .1) begin

world = Object3D (CoordinateSystem (0 .6))
pos1 = Object3D (world ,r=[Lx /2,0 .0 , Lx /2])
pos2 = Object3D (pos1 , r=[Lx ,0 .0 ,0 .0])
ground = Object3D (world , Box (..),..)
bar1 = Bar (Lx = Lx)
bar2 = Bar (Lx = Lx)
bar3 = Bar (Lx = Lx)

12https://docs.julialang.org/en/v1/manual/metaprogramming
13https://en.wikipedia.org/wiki/Four-bar_linkage

rev1 = Revolute (pos1 , bar1 . obj1 ,
phi_start = pi /2)

rev2 = Revolute (bar1 . obj2 , bar2 . obj1 ,
phi_start =- pi /2)

rev3 = Revolute (bar3 . obj2 , bar2 . obj2 ,
phi_start =- pi /2)

rev4 = Revolute (pos2 , bar3 . obj1 ,
phi_start = pi /2)

...
end� �
The angle of revolute joint rev1 is moved kinematically via
a signal. The resulting system is simulated by calling function
simulate! (for more details of the Modia3D elements, see [12]):� �
@assembly MoveFourBar (Lx =0 .1) begin

fourbar = Fourbar (Lx = Lx)
sine = Sine (...)
sig = SignalToFlangeAngle (sine .y)
connect (sig , fourbar . rev1)

end

model = SimulationModel (MoveFourBar (Lx =0 .2))
result = simulate !(model , stopTime =3 .0)� �
3. Collision Handling
Modeling and simulating the collisions between geometrical ob-
jects is difficult and there are many methods dedicated to particu-
lar purposes. For example, in a game it is important that collisions
of many objects are supported in real-time and that a simulation
looks reasonably realistic. Game engines typically make compro-
mises regarding physics (see for example [5], where it is pointed
out that NVIDIA PhysX and Havok neglect Coriolis forces). When
designing an industrial product, it is important that collision mod-
els can be validated by measurements. Therefore, the simulation
results must be much closer to reality as in a game.

3.1 User’s View
Objects only take part in collision handling, if a contactMaterial
is associated with them. Modia3D uses two sets of material data:

(1) Solid material constants
In a dictionary, the name of one material is used as a key, for
example Steel. The values are typical material constants of a
solid. For elastic response calculation, Young’s modulesE and
Poisson’s ratio ν are used. From this data of two contacting
objects, a spring constant is computed to describe the elastic
deformation in the contact area.

(2) Contact pair material constants
In another dictionary, the names of two materials are used as
a key, for example Steel and DryWood. The values are the
coefficient of restitution cor, the kinetic/sliding friction force
coefficient µk and the rotational resistance torque coefficient
µr between these two contacting objects of the respective ma-
terials, see section 3.3.

A simple example is shown in Fig. 3, where a steel ball is bouncing
on a wooden table. This model is defined with the following Julia
program (r is the position vector from the parent – defined with
the first argument – to the reference frame of the object and fixed

defines whether the object is fixed or not fixed in space):

2

https://docs.julialang.org/en/v1/manual/metaprogramming
https://en.wikipedia.org/wiki/Four-bar_linkage

Proceedings of JuliaCon 1(1), 2019

Fig. 3. Ball falling on a table.� �
@assembly BouncingBall begin

world = Object3D ()
ball = Object3D (world , Solid (SolidSphere (0 .0 2),

...; contactMaterial = " Steel ");
r=[0,0,1 .0 1], fixed = false)

table = Object3D (world , Solid (SolidBox (1,1,0 .1),
...; contactMaterial = " DryWood ");
fixed = true)

end

bounce = BouncingBall (sceneOptions =
SceneOptions (enableContactDetection = true))

model = SimulationModel (bounce)
result = simulate !(model ; stopTime =3 .0)� �
During simulation, the contactMaterials defined for ball and
for table are used as keys in the two dictionaries sketched above.
When the two objects penetrate each other, an elastic response is
computed with the help of the dictionary values (provided collision
handling was explicitly enabled in the scene options).

3.2 Numerical Solution
A Modia3D model is mathematically defined by the hybrid DAE
system (1), where x = x(t) and J (1c) is a regular Jacobian:

0 =

[
fd(ẋ,x, t, zi > 0)

fc(x, t, zi > 0)

]
(a)

z = fz(x, t) (b)

J =

∂fd

∂ẋ
∂fc

∂x

 (c) (1)

When differentiating fc once, it is (conceptually) possible to solve
(1c) for ẋ because J is regular. Therefore, (1a) is an index 1 DAE.
(1b) defines zero-crossing functions z(t). Whenever a zi crosses
zero, an event is triggered, simulation is halted, functions fd,fc

can be changed, and simulation is restarted. (1) is numerically
solved with the variable-step DAE integrator IDA of the Sundi-
als suite [9] via the Sundials.jl [16] Julia package. Since contact
forces and torque lead to extreme changes of fd,fc, the distances
between convex shapes are used as zero-crossing functions zi(t) so
that the start and the end of a contact phase triggers an event. It is
expected that this approach improves the reliability of a simulation.
Furthermore, the elastic response calculation of section 3.3 needs
the relative velocity when a contact starts, to compute an appropri-
ate damping factor d. Therefore, an event at the start of a contact is
mandatory.
Distances between convex shapes, as well as penetration depths are
computed with an improved version of the Minkowski Portal Re-
finement algorithm (MPR-algorithm) [18]. The MPR-algorithm is
much simpler to implement and has less numerical problems than
the often used GJK/EPA-standard algorithms [2, 7], because it only
works with triangles and not with tetrahedrons. In the original ver-
sion of the MPR-algorithm [18] only penetration depths are deter-
mined. In Modia3D improvements of the MPR-algorithm are uti-
lized that have been proposed in [10, 11], in particular to compute
the distances of shapes that are not in contact and treat special col-
lision situations properly.

~fn

~ft

~en

~τω

~et

~eω

Fig. 4. Contact normal force ~fn, contact tangential force ~ft (= sliding
friction force) and contact torque ~τω between two penetrating objects.
~en, ~et, ~eω are unit vectors in direction of the respective relative movement.

Collisions of n potentially colliding shapes are handled in the fol-
lowing (mostly standard) way:

1. Broad Phase
The shapes are approximated by Axis Aligned Bounding Boxes,
see e.g. [2], where potential collisions and approximate dis-
tances can be determined with low computation cost resulting
in O(n2) low-cost tests. When using special data structures
(such as octrees or kd-trees), it is even possible to reduce the
number of low-cost tests to O(n log(n)).

2. Narrow Phase
For the potentially colliding shape pairs as identified in the
broad phase, the signed distances are computed with the im-
proved MPR-algorithm [11].

3. Response Calculation
If two shapes are penetrating, a normal and a tangential force,
as well as a torque are applied at the contact point. For details,
see section 3.3 and Fig. 4.

3.3 Elastic Response Calculation

A contact normal force ~fn, a contact tangential force ~ft (= sliding
friction force), and a contact torque ~τω are calculated when two
3D objects penetrate each other with a penetration depth δ ≥ 0, as
shown in Fig. 4. The intuition is that there is a contact area with a
certain pressure distribution in normal and a stress distribution in
tangential direction and that the response characteristics provides
an approximation of the resultant force and torque of these distri-
butions.
The MPR-algorithm computes the contact point, δ, and a unit vec-
tor ~en that is orthogonal to the contacting surfaces. The novel re-
sponse characteristic of (2) utilizes ideas from [6, 15, 17] with some
extensions and corrections. Variables with index geo are computed
from the contacting geometries and vectors with index reg are reg-
ularized with smooth characteristics to avoid divisions by zero (for
example, |~et,reg| = 1 with exception of a small region around
|~vrel,t| < vsmall, where |~et,reg| = 0 at |~vrel,t| = 0 and it smoothly
approaches 1 at |~vrel,t| = vsmall):

fn = max

(
0, cres cgeo δ

ngeo

(
1 + d δ̇

))
(2a)

~fn = fn~en (2b)
~ft = −µkfn~et,reg (2c)
~τω = −µrµgeofn~eω,reg (2d)

The symbols of (2) have the following meaning:

~en Unit vector normal to the contacting surfaces.
~et Unit vector in direction of the relative tangential velocity.
~eω Unit vector in direction of the relative angular velocity.
cres(E1, E2, ν1, ν2) Resultant spring constant in normal direc-

tion. cres = 1/(1/c1 + 1/c2); ci = Ei/(1− ν2i).

3

Proceedings of JuliaCon 1(1), 2019

d(correg, δ̇
−) Damping coefficient as function of the regularized

coefficient of restitution correg and δ̇ when contact starts
(δ̇− ≥ 0). Variable correg is computed according to [6] and
regularized so that correg = 0.001 if the normal relative ve-
locity vrel,n = 0ms−1 and approaches cor when vrel,n =
vsmall. One reason for this is that otherwise [6] would result in
a division by zero if cor = 0. The other reason is that a bounc-
ing object stays at rest if vrel,n becomes small enough and
therefore correg must be drastically reduced for small vrel,n
(this effect is typically not taken into account in other contact
laws, such as in [17]).

µk Kinetic/sliding friction force coefficient (≥ 0).
µr Rotational resistance torque coefficient (≥ 0). Its effect is that

torque ~τω is computed to reduce the relative angular velocity
~ωrel between the two objects until ~ωrel = 0 rad s−1. For a
ball, µr is the (standard) rolling resistance coefficient and µgeo

is the ball radius.

cgeo, ngeo, µgeo depend on the geometries of the two objects in
contact. If not enough information is available, these factors are set
to one. cgeo, ngeo take the contact volume into account, under the
assumption of Hertz’ pressure (e.g. ngeo = 3/2 if at least one of
the two contacting objects is a sphere).
The response characteristics (2) shall be clarified with a few special
experiments:

Comparison between elastic and impulsive contact response. In
Fig. 5, the height of the bouncing ball (see model of Fig. 3) is
shown as a function of time. The red curve is the reaction when
using the elastic response calculation of (2) with cor = 0.7 and the
solid material constants of steel and of dry wood. The blue curve
is the result when the contact force is computed with an impulse
for the same cor value. The green curve is correg (for small veloc-
ities it becomes small). This shows that fn in (2) leads to a similar
reaction if compared to an impulsive response. Note, this was the
intention for the development of this force law in [6]. A systematic
comparison was made in [17].

Sliding and rolling ball. In Fig. 6 an animation of a billiard ball is
shown that is sliding and rolling on a billiard table. The billiard ball
is a free flying object with 6 degrees-of-freedom where the rotation

Fig. 5. Bouncing ball (see Fig. 3) with impulsive contact and the elastic
response characteristic of (2).

Fig. 6. Billiard ball sliding and rolling on a billiard table.

Fig. 7. Position of a sliding and rolling billiard ball in x- and z-direction,
velocity in x-direction, and angular velocity in y-direction.

is described with quaternions (in total, the state of this object is
defined with 13 variables). It starts at its initial position rs = 0.2m
with an initial velocity vs = 3ms−1 . At initialization, the billiard
ball is placed in touching position with the table (penetration depth
δ = 0). The ball subsides immediately, because of gravity in z-
direction. Therefore, the ball and the table are colliding, a collision
event is triggered, and the two objects are penetrating each other.
The material data is shown in table 2.
The upper left plot in Fig, 7 shows the position of the billiard ball
in x-direction. The lower left plot of Fig. 7 shows the subsidence
of the ball into the table which is in the order of 10−5 m. The up-
per right plot shows the velocity of the ball in x-direction and the
lower right plot displays the angular velocity in y-direction. The
first 0.15 s the ball is sliding. Due to sliding friction (µk = 0.6), the
relative velocity is reduced. At the same time, the sliding friction
force acts as a torque around the ball center and forces a rotation
of the ball around the y-direction. At time = 0.15 s, the relative
velocity in tangential direction vrel,t is zero

vrel,t = vball,1−ωball,2rball = 2.125− 70 · 0.03 ≈ 0m s−1 (3)

and ideal rolling of the ball takes place. Since vrel,t = 0ms−1,
the sliding friction force ~ft = 0N, because ~et,reg = 0. Therefore,
the ball would roll forever, contrary to reality. On the other hand,
the rotational resistance torque ~τω (µr = 0.02) acts as a rolling re-
sistance that continuously reduces the angular velocity ωball,2 and
the ball comes to rest at some point in the future outside of the
plot area (see right upper and lower plot of Fig. 7). The result is
that (2) is able to reproduce the effect of a sliding and rolling ball.
However, for simplicity of the formulation, in this simplistic elastic
response law, velocity dependency of the coefficients cor, µk, µr is
neglected.

Collision of two balls. Two billiard balls are positioned on a bil-
liard table, see Fig. 8. One of them has an initial velocity and hits
the other resting ball after some time. Simulation results are shown
in Fig. 9. Before the first ball hits the second one, the effects of

4

Proceedings of JuliaCon 1(1), 2019

sliding and rolling occur as analyzed before. At time = 0.55 s,
the first ball hits the second ball. Since the coefficient of restitution
between the two balls is one, a fully elastic collision takes place.
In this case the first ball transfers most of its kinetic energy to
the second ball which starts moving with the velocity of the first
ball. This “exchange“ of velocity can be observed in the middle
plot of Fig. 9 at time = 0.55 s. However, since the first ball was
rolling, the angular momentum was greater zero. This momentum
is conserved. Therefore, the first ball continues rolling and veloc-
ity vball,1 rises from zero again. Since the relative velocity is no
longer zero due to the impact, again a friction force ~ft is acting
that introduces a counter torque at the balls axis which quickly re-
duces the angular velocity until again the relative velocity is zero
around time = 0.65 s. Both balls are again ideally rolling, and due
to the rotational resistance torque, the angular velocities are slowly
reduced until both balls come to rest which is not shown in the
plots.

3.4 Regularizing the Contact Area
A DAE solver such as IDA, see Section 3.2, solves a nonlinear al-
gebraic equation system at every time instant. If fd,fc in (1) are
not smooth or even not continuous, it is most likely that no solution
of this algebraic equation system is found and simulation stops.
This situation occurs easily, for example, if the edges or vertices
of two boxes collide on each other, because very small changes of
the positions of the boxes can change the contact situation drasti-
cally. To improve the reliability of the simulation, Modia3D uses
the approach proposed in [2], and is smoothing every shape with a
small sphere (default radius = 1mm) that is (conceptually) moved
over all surfaces. Practically, this smoothing can be very easily and
cheaply incorporated for the convex collision handling.
Every method that considers only contact points on two colliding
objects and the corresponding penetration depth has the disadvan-
tage that an infinite number of solutions can occur in some cases.
For example this happens, when a box falls on a table and the faces
of box and table are parallel. Imagine small changes in the config-
uration can result in identification of very different contact points
in the contact area. It is then highly probable that simulation with a
variable-step solver fails. Furthermore, the contact force and torque
depend heavily on the size of the contact area. The penetration
depth alone does not provide enough information to calculate rea-
sonable values that are in accordance with physics. For both cases,
it would be necessary to take the complete contact area and volume
into account, as done e.g. in [4]. This method is however much
more costly and probably only works reasonably for soft contacts
where the contact volume is large enough. To summarize, collision
handling with variable-step solvers and penetration depth compu-
tation can most likely only work reliably for point contacts that are
smoothly changing.

Fig. 8. Billiard ball colliding with another billiard ball.

Fig. 9. Position of two colliding billiard balls, velocity in x-direction, and
angular velocity in y-direction.

4. Example: Billiard Table with 16 Billiard Balls
The billiard table in Fig. 10 has 16 billiard balls. The material con-
stants are shown in Table 2. The cue ball has an initial velocity
pointing to the right and hits the the center of the rack (15 other
balls) exactly after a short time interval. This results in a symmet-
ric evolution of the balls, as one would expect. All previously de-
scribed effects (sliding, rolling, colliding) act together. The hybrid
DAE system has dim(x) = 13 · 16 = 208 and there are about 200
possible collision pairs. Simulation on a standard PC needs about
20min for 5 s of simulation time. At the moment, the Modia3D
code is implemented for functionality and not tuned for efficiency,
so a speed-up is expected in the future.

Table 2. Material constants for billiard table.
E [N/m2] ν

ball 5.4e9 0.34

table 1.1e10 0.4

cor µk µr

ball table 0.0 0.6 0.02

ball ball 1.0 0.0 0.0

ball cushion 0.8 0.0 0.0

5

Proceedings of JuliaCon 1(1), 2019

Fig. 10. Initial setting of 16 billiard balls (top). Billiard balls after 5 s (bot-
tom).

5. Conclusion
In this article, a short overview about the experimental 3D model-
ing environment Modia3D is given. In particular, collision handling
with a variable-step solver has been sketched and a novel formula-
tion for elastic response calculation is proposed. The Modia3D col-
lision and contact handling is demonstrated with several examples.
Modia3D combines ideas from different communities. The archi-
tecture with component-oriented modeling is inspired by game en-
gines so that 3D models can be setup in a very flexible way, as
well as several elements for collision handling. Other features are
from multi-body programs, like hierarchical structuring, support of
closed kinematic loops, and algorithms to compute results close to
real physics.
Modia3D is still a prototype implementation and several impor-
tant parts are under development. Especially, the integration with
Modia is missing at the moment. Furthermore, the code was cur-
rently mainly developed for its functionality and is not yet tuned
for efficiency. For these reasons, benchmarks and comparisons with
other programs with respect to simulation efficiency have not yet
been performed.

6. References
[1] T. Bellmann. Interactive Simulations and advanced Visualiza-

tion with Modelica. In Francesco Casella, editor, Proc. of the
7th International Modelica Conference. LiU Electronic Press,
Sept. 2009.

[2] G.v.d. Bergen. Collision Detection in Interactive 3D Environ-
ments. Morgan Kaufmann Publishers, 2003.

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Ju-
lia: A fresh approach to numerical computing. SIAM review,
59(1):65–98, 2017.

[4] H. Elmqvist, A. Goteman, V. Roxling, and T. Ghandriz.
Generic Modelica Framework for MultiBody Contacts and
Discrete Element Method. In Peter Fritzson and Hilding
Elmqvist, editors, Proc. of the 11th International Modelica
Conference. LiU Electronic Press, Sept. 2015.

[5] T. Erez, Y. Tassa, and E. Todorov. Simulation Tools for
Model-Based Robotics: Comparison of Bullet, Havok, Mu-

JoCo, ODE and PhysX. In Proc. of IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2015.

[6] P. Flores, M. Machado, M. Silva, and J. Martins. On the con-
tinuous contact force models for soft materials in multibody
dynamics. Multibody system dynamics, 25(3):357–375, 2011.

[7] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A Fast Proce-
dure for Computing the Distance Between Complex Objects
in Three-Dimensional Space. IEEE Journal of Robotics and
Automation, 4(2):193–203, 1988.

[8] M. Hellerer, T. Bellmann, and F. Schlegel. The DLR Visu-
alization Library - Recent development and applications. In
Hubertus Tummescheit and Karl-Erik Arzen, editors, Proc. of
the 10th International Modelica Conference. LiU Electronic
Press, March 2014.

[9] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Ser-
ban, D.E. Shumaker, and C.S. Woodward. SUNDIALS: Suite
of Nonlinear and Differential/Algebraic Equation Solvers.
ACM Transactions on Mathematical Software, 31(3):363–
396, September 2005.

[10] B. Kenwright. Generic Convex Collision Detection using
Support Mapping. Technical report, 2015.

[11] A. Neumayr and M. Otter. Collision Handling with Variable-
step Integrators. In Proceedings of the 8th International Work-
shop on Equation-Based Object-Oriented Modeling Lan-
guages and Tools, EOOLT’17, pages 9–18. ACM, 2017.

[12] A. Neumayr and M. Otter. Component-Based 3D Modeling of
Dynamic Systems. In M. Tiller, H. Tummescheit, and L. Van-
fretti, editors, Proceedings of the American Modelica Confer-
ence, Oct. 2018.

[13] A. Neumayr and M. Otter. Algorithms for Component-Based
3D Modeling. In Proceedings of the 13th International Mod-
elica Conference. LiU Electronic Press, March 2019.

[14] R. Nystrom. Game Programming Patterns. Genever Benning,
2014.

[15] M. Otter, H. Elmqvist, and J. D. López. Collision Handling
for the Modelica MultiBody Library. In Proceedings of the
4th International Modelica Conference, 2005.

[16] C. Rackauckas and Q. Nie. DifferentialEquations.jl – A Per-
formant and Feature-Rich Ecosystem for Solving Differential
Equations in Julia. Journal of Open Research Software, 5(1),
2017.

[17] L. Skrinjar, J. Slavič, and M. Boltežar. A review of contin-
uous contact-force models in multibody dynamics. Interna-
tional Journal of Mechanical Sciences, 145:171–187, 2018.

[18] G. Snethen. Xenocollide: Complex collision made simple. In
Scott Jacobs, editor, Game Programming Gems 7, pages 165–
178. Charles River Media, 2008.

6

	Introduction
	Flexible Definition of 3D Systems
	Collision Handling
	User's View
	Numerical Solution
	Elastic Response Calculation
	Regularizing the Contact Area

	Example: Billiard Table with 16 Billiard Balls
	Conclusion
	References

