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ABSTRACT
Econometrics.jl is a package for econometrics analysis. It provides
a series of most common routines for applied econometrics such
as models for continuous, nominal, and ordinal outcomes, longitu-
dinal estimators, variable absorption, and support for convenience
functionality such as weights, rank deficient, and robust variance
covariance estimators. This study complements the package through
a discussion of the motivation, placing the contribution within the
Julia ecosystem and econometrics software in general, and provides
insights on current gaps and ways the Julia ecosystem can evolve.
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1. Introduction
This study has four core sections. The first surveys what are some
commonly used functionality for econometrics analysis. The second
provides an overview of the current state of these within the Julia
[5] ecosystem including current tools and gaps. The third provides
a comprehensive summary of the functionality provided by the
new package, Econometrics.jl, and next steps. Lastly, I provide
insights on how the Julia ecosystem can evolve from my experience
developing the new tool.
Regression analysis is a core tool used to understand the relation
among variables. For example, understanding these relationships
can provide insights into causal relations or as a basis to develop
predictive models. In the realm of statistical inference, one may be
interested in common targets such as confidence intervals of the
parameters estimates, joint-significance of features, out-of-sample
predictive performance, and others. Moreover, most models make
certain assumptions which can be tested through statistical tests or
model diagnostics which provide confidence in the estimation and
results.
Regression analysis is a broad term that encompasses a wide variety
of estimators and models. What follows is a brief summary of some
of the many components that may fall within the concept. Regression
analysis can be used for both observational and experimental settings
and it allows great flexibility for a multitude of applications. The
main idea is to find estimates for model parameters to optimize some
objective such as the likelihood in maximum likelihood estimation
(MLE). Other potential objectives include restricted maximum like-
lihood (REML) or a (Quasi-)Bayesian approach such as maximum
a posteriori probability (MAP). One framework is the generalized
linear model (GLM) which use a linear predictor that is mapped
through a link function to a distribution modeling the response. Con-
tinuous responses might use a Normal distribution, count responses

a log link with a Negative Binomial distribution, and probability
models might use a categorical distribution with links that map to
valid probabilities such as the Logit link. In cases such as probability
models where the responses are multidimensional, the generaliza-
tion is known as vector generalized linear models (VGLM). Other
generalizations include relaxing the relation between the linear pre-
dictor and the outcome to be the sum of smoothing functions through
a generalized additive model (GAM) framework or incorporating
random effects through a mixed models approach. Some estimators
address challenges such as endogeneity, censored responses, and
zero-inflated responses through various solutions such as instrumen-
tal variables or censored regression model. Others, exploit aspects
of the data to overcome challenges or increase efficiency such as ran-
dom effects in longitudinal data. In relation to the second moment of
the estimator, robust variance covariance estimators or boostrapping
may be required for inference.
Of the many potential tools practitioners may require, what are
some of the most common? Not every estimator is as widely ac-
cessible or commonly used. Some educated guesses may be well
justified such as ordinary least squares being more widely used than
spatially-weighted regressions. In order to avoid speculation, I defer
to a reasonable assumption that the most common estimators are
those usually taught in academic programs and available in widely
used software [25]. Most programs teach tools to address the most
common response types: continuous, count / rates, nominal, ordinal,
and duration outcomes. This suggests some common models may in-
clude linear models, Poisson/negative binomial, multinomial logistic
regression, and ordinal logistic regression with proportional odds as-
sumption. Topics in time series and panel data are usually offered in
most programs. Perhaps, the most common topic is short panels (i.e.,
many units of observations and relatively small number of repeated
observations). Common estimators include pooling, first-difference,
fixed effects / within estimator, and one-way random effects. The
between estimator is usually masked as an intermediate model for
estimating the error component in the random effects model. Lastly,
the two big challenges taught in most programs are endogeneity and
heteroscedasticity. These challenges are usually countered through
instrumental variables (e.g., 2SLS) or robust variance-covariance
estimators (e.g., heteroscedasticity consistent estimators).
Previous work have surveyed the functionality of 24 alternatives
for common econometrics routines [25]. Throughout the history
of econometrics software, alternatives have risen and fallen in fol-
lowing. Some high contenders by market share include Stata [28],
R [23], MATLAB, Python [21], IBM SPSS Statistics, SAS soft-
ware, and EViews. These include both commercial and open-source
alternatives. Functionality may be provided by the base/standard
libraries in the statistical software environment, as a product such as
a toolkit or user contributed such as a module/package that is dis-
tributed. Some examples of user-contributed functionality include
the reghdfe Stata module and a series of R packages such as MASS
[30], lmtest [33], sandwich [32], plm [10], and mlogit [9].
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2. Common Estimators
2.1 Weighted Least Squares
Weighted least squares solves

β =
(
X>WX

)−1
X>Wy (1)

with information matrix

Ψ =
(
X>WX

)−1
(2)

where X is the full rank version of a model matrix, W a diagonal
matrix with positive values (e.g., frequency), and y the response. The
common solution method is to factorize X as either its QR decom-
position or Cholesky decomposition. Singular value decomposition
may also be used, but it is rare as the computational complexity
is significantly higher. In the case of the QR decomposition the
solution method comes down to, transforming the model matrix
and the response by row-wise multiplying them by the square root
of the weights.1 Afterwards, the factorization is used to solve the
system of equations using the appropriate method. In the case of a
QR decomposition, R is an upper triangular matrix which enables
back substitution to obtain the solution efficiently without matrix in-
version. However, a Cholesky decomposition would still be required
if the information matrix is desired. The solution method with QR
decomposition is delineated in equation 3.2
The case for the Cholesky decomposition follows closely and with-
out loss of generality other variants could be used such as Bunch-
Kaufman decomposition or the upper triangular form (U>U ). The
QR decomposition is more numerically stable, but more expensive
than Cholesky.3 Equation 4 delineates the solution method with
Cholesky decomposition. Since the information matrix is an im-
portant component, Bunch-Kaufman decomposition, a Cholesky
variant, is the preferred method used in Econometrics.jl.

X̃ = X . *
√
w

ỹ = y . *
√
w

QR = X̃

β = R \
(
Q>ỹ

) (3)

LL =
(
X>WX

)
β = L \

(
X>Wy

)
Ψ =

(
L−1

)>
L−1

(4)

The remaining estimators will assume a Cholesky decomposition
as part of the estimation technique. The QR decomposition will be
used in models estimated through iterative reweighted least squares
(IRLS) as the factorization may be computed once and recycled.

2.2 Within Estimator
The within estimator is an application of the Frisch-Waugh-Lovell
theorem [12, 18]. The estimator allows to compute the parameters
estimates and information matrix for a subset of predictors without
having to include the full set of categorical features. For example,

1The row-wise Hadamard product is used in equation 3 as (. *).
2The (\) is a linear solver operator, such that x = A\b => Ax = b.
3O

(
n3

)
> O

(
2mn2 − 2

32n
3
)

where the matrix has m rows and n
columns.

one may include individual fixed effects in a large data set that
may increase the dimension of the model matrix to several thou-
sand making the problem unfeasible or inefficient. Moreover, some
parameters may not be consistently estimated in certain contexts.
For example, individual fixed effects are not consistently estimated
when there is a fixed length for the panels (i.e., more observations
implies more parameters a type of curse of dimensionality).
Consider the following model,

y = Xβ +Dθ + e (5)

where y is the response, β the parameters of interest, X the features
of the parameters of interest,D a high dimensional representation of
categorical features as control, θ the parameters on said covariates,
and e the error term. In order to obtain the parameter estimates β and
the associated information matrix, we can estimate an alternative
specification.

ỹ = X̃β + e (6)

where X̃ and ỹ are obtained by using projections, such as the an-
nihilator matrix (i.e., I −X

(
X>WX

)−1
X>). There are several

methods to obtain a suitable alternative regression and these are not
unique. Stata’s module reghdfe [8] presents several approaches to
solving these problems including specialized methods in certain ap-
plications. Some implementations include Stata module reghdfe and
the FixedEffectsModels.jl [13] package. The two most common ap-
proaches are solving for the residuals through a sparse least-squares
problems such as with LSMR [11] or using some variant for the
method of alternating projections. The residuals approach tends to
be more efficient, but degrades certain aspects of the model (e.g., no
longer able to obtain the mean response). The method of alternating
projections is able to preserve under certain conditions artifacts of
the original regression such as obtaining the same estimate for the
intercept even though it is not particularly meaningful. Using the
original response and the invariant residuals allows to recover the
fitted values of the original model.

2.3 Between Estimator
The between estimator estimates

ỹ = X̃β + e (7)

where the transformed model components are collapsed through
some dimension through the mean function. For example, one ap-
proach to obtaining the error component for a random effects model
is to use model statistics of the between estimator collapsing by
panel. The weighted version of the model uses the observation
weights to compute the weighted mean values and may use the
weight fractions by the collapsing dimension as weights for the
weighted least squares regression on the transformed model.

2.4 Random Effects Model
The random effects model relies in estimating the unobserved error
components. Random effects requires a particular schema for the
data which has a panel component and a temporal component. There
are multiple approaches, but the most common one is the Swamy-
Arora approach [29]. This estimator uses the mean squared residuals
estimates (i.e., deviance divided by residual degrees of freedom)
of the between and within models using the panel dimension as
the collapsing / dimension to absorb. The error components are
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estimated as

θg = 1−

√
σ2
e

Tg ∗ σ2
u + σ2

e

σ2
e = W

σ2
u = max

{
0, B − σ2

e ∗ T̄
} (8)

where W is the mean squared residuals of the within model, B the
mean squared residuals of the between model, and Tg is the length
of the panel g, and T̄ is the harmonic mean of the panel lengths.
The model terms are then transformed by partial demeaning

ỹit = yit − θg ∗ ȳ.t
X̃it = Xit − θg ∗ X̄.t

(9)

and these are used in the standard regression setting.

2.5 First-Difference Estimator
The first-difference estimator is a special case that use time / panel
context for feature designs. The most common transformations
include contrasts such as treatment coding (dummy coding), sum
coding (effects coding) or Helmert coding which apply to categorical
variables. Other common feature engineering techniques include log-
transform and polynomial terms. However, certain transformations
require a context such as a time dimension. Some examples include
shift operations (lag, lead) and differentiating (e.g., first-difference).
These operations may optionally require a group context such that
the operations are performed group wise. Time-context operations
have important concepts such as frequency and gaps. The frequency
describes the difference between periods/observations and gaps
describe observations that are skipped and should be understood as
missing.

2.6 Instrumental Variables
Every estimator thus far can be generalized to include endoge-
nous covariates through instrumental variables. The most common
method is through two stages least squares (2SLS). The idea is to
first apply all the relevant transformations to the model terms and
apply the 2SLS standard procedure. In the case of the random ef-
fects model, the within and between models are estimated using
2SLS to obtain the error component estimates. After applying the
random effects transformation to each model term the 2SLS process
is employed in the final regression model [2].
The standard 2SLS estimator uses,

ẑ = [XZ]
[(

[XZ]>W [XZ]
)−1

[XZ]>Wz
]

β̂ =
(
[Xẑ]>W [Xẑ]

)−1
[Xẑ]>Wy

Ψ =
(
[Xẑ]>W [Xẑ]

)−1
ŷ = [Xz]β̂

(10)

for each model where z is endogenous variables andZ the additional
instruments.

2.7 Nominal Response Model
Multinomial logistic regression is a probability model for estimating
probabilities across multiple categories. It is a vector generalized lin-
ear model with softmax link function and the categorical distribution.
It is estimated through iterative re-weighted least squares (IRLS)
methods such as the QR Newton variant [20]. The data schema for

discrete choice models include the response (observed behavior),
unit of observation covariates, and outcomes-specific covariates.
The initial implementation allows for the base case of no-outcome
specific features.

2.8 Ordinal Response Model
Ordinal logistic regression is a probability model for estimating
probabilities across multiple ordered categories. Similarly to its
nominal counterpart, it has a pool of alternatives, and observed
outcome, unit of observation covariates, and outcome-specific co-
variates. A common assumption is the proportional odds assumption
which may be relaxed in other models.
The log-likelihood (`) function has the same form as the general
form for computing the cost associated with a categorical distribu-
tion and predicted probability for realization. More specific,

` =

m∑
i=1

K∑
k

1 (yi = k) ln [F (αk+1 − η)− F (αk − η)] (11)

where F is the cumulative distribution function of the logistic distri-
bution with zero location and unit scale, η is the linear projection,
and αk is the threshold for lower threshold [19]. The log-likelihood
function and the gradient are passed to the Optim.jl framework [14]
using ForwardDiff.jl [26] forward mode automatic differentiation
(AD) for the Newtonian solver.

2.9 Count/Rate Model
Count/rate models are generalized linear models and follow a simi-
lar description as nominal models. The most common distribution
choices are Poisson and Negative Binomial with the log link func-
tion. Negative Binomial is a generalization of the Poisson model,
which adds an extra parameter for modeling the second moment
(i.e., relaxes the mean equal variance assumption in the Poisson
model). For the Negative Binomial to be a distribution in the ex-
ponential family it needs a restriction parameter which may be
optimized through maximum likelihood estimation. An offset may
be included to handle rates, a generalization of counts, that account
for differences in exposures. Other generalizations include additive
or multiplicative errors relations.

2.10 Duration Models
Duration models deal with responses of the type time until an event.
One such model is the Cox proportional hazards model which relies
on the proportional hazards assumption. Various models of these
kind may be re-specified in a generalized linear model framework
relating to the previous descriptions.

3. Technical Challenges
One technical challenge that is prevalent through every model is
the issue of rank deficient terms. Rank deficient systems of linear
equations are not identifiable. One approach is to error out and
let the user explore and find a subset of features such that the no
multi-collinearity assumption holds. The second approach is to au-
tomatically promote the system to a full rank version by excluding
linearly dependent features. How much collinearity is too much
is not an exact science. Some potential criteria include using the
absolute values of the diagonal in the triangular matrix of the fac-
torization (e.g., L in LL>, R in QR, D in LDL>, Σ in UΣV >).
These values are then compared against a chosen tolerance and the
column of the term is deemed linearly independent if the values are
greater than the tolerance.
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Note that Cholesky, QR, and Bunch-Kaufman decomposition allow
to identify which columns are independent while singular values
only allow to determine the rank. It may be arbitrary to choose
among linearly dependent features. An additional level of complex-
ity in probability models is the issue of linearly separability for
probability models [16].

4. Julia Ecosystem
The usual pipeline for regression analysis involves (1) accessing data
(I/O), (2) obtaining a tabular data representation, (3) data wrangling,
and (4) employing regression analysis tools. The following sections
provides an overview of the pipeline available in Julia provided by
the Julia statistics and data ecosystems.

4.1 Data to Modeling
StatsBase.jl [17] builds on top of Statistics.jl (standard library) to
provide additional statistical functionality. One which includes the
abstraction for Statistical Models (and Regression models which
inherits from the former). It provides a simple and powerful API for
the whole Julia ecosystem to use. It allows packages to implement
the API and easily support a common functionality users can expect
and interact with in a familiar manner. For example, coef will ex-
tract the parameter estimates from any object that implements the
API. The full API include model statistics such as: coefficient of
determination (or adjusted), information criteria statistics such as
AIC/BIC (and corrected), statistics about the model fitness such as
deviance, log-likelihood, and usual queries such as point estimates,
variance covariance estimates, standard errors, confidence intervals,
degrees of freedom (or residual degrees of freedom). Lastly, several
accessors are available for fitted values, response, model matrix,
information matrix, leverage values, error components, etc. Lastly, it
also provides an abstraction for weights including frequency weights
and analytical weights.
Tables.jl [22] provide an interface for tabular data. This API allows
users to choose from various solutions the tabular data implemen-
tation of their choosing without having to worry that their choice
will limit potential functionality. Many tabular implementations
such as DataFrames.jl [31] provide robust functionality to many
routines such as handling categorical features, dates/time, missing
values, reshaping data, split/apply operations, and others. Users need
not to worry about any I/O issues as a rich array of options exist
for importing and exporting across different file formats such as
delimiter-separated values, JSON, Feather, HDF5, MATLAB, Stata,
SPSS, SAS, and R.
StatsModels.jl [15] is a package that provides the means to go from
data to model terms. It provides the formulae language (e.g., similar
to R’s formulae syntax). A model is then build using a formula,
data, and additional model specific arguments. The process can be
summarized as (1) collecting the information in the formula, (2)
parsing its meaning by applying a schema based on the data, user-
specified contrasts or other arguments, and (3) generating the model
terms such as a response, model matrices, etc. Lastly, a package fits
said model and implements the API.

4.2 Regression Analysis
The regression analysis ecosystem in Julia has GLM.jl [3] as its flag-
ship. GLM.jl provides the typical functionality for fitting generalized
linear models through Fisher scoring. This includes linear models,
Poisson/Negative Binomial, Logit/Probit, and other non-canonical
link models. CovarianceMatrices.jl [24] provides various variance
covariance estimators for GLM.jl models à la R’s sandwich pack-

age. MixedModels.jl [4] extends GLM.jl for mixed-effects models.
FixedEffectModels.jl provides fast estimation of linear models with
instrumental variables and high dimensional categorical variables à
la reghdfe. Survival.jl [1] provides a series of estimators for duration
models. Two major gaps in the ecosystem include estimating nom-
inal and ordinal response models (i.e., discrete choice) with more
than two alternatives and support for longitudinal estimators.

5. Econometrics.jl
Econometrics.jl is a package for performing several common econo-
metrics routines in the Julia language. It aims to provide the follow-
ing functionality for two major gaps in the ecosystem, longitudinal
estimators and discrete choice models. Developing the package has
resulted in many contributions in the current ecosystem. However,
the development of this package serves multiple purposes beyond
the immediate effect. As the statistics ecosystem evolves and ma-
tures, Econometrics.jl aims to serve as inspiration and an alternative
to design decisions, standards, and option for users and developers.

5.1 Fitting Models
This section will showcase some examples of using the package for
various estimators. For each estimator a brief description of the data,
model, syntax, and output will be provided. Results will be provided
for Econometrics.jl and some alternatives such as R or Stata.
For linear models, the examples use a crime dataset [6]. The data
set is a balanced longitudinal data set with 90 counties in North
Carolina from 1981 to 1987. The outcome variable is the crime rate
and the explanatory variables include the probability of conviction,
average sentence, and probability of prison sentence. Estimating the
pooling estimator or the between estimator can be accomplished
as in figure 1 on the facing page and 2 on the next page. Table 1
on page 8 shows the estimated 95% confidence intervals using
Econometrics.jl, Stata, and R’s plm package.
The syntax to estimate a model follows the StatsBase API which
provides a method for building and estimating models (i.e., fit). The
fit approach takes (1) an estimator, (2) a model formula, (3) data, and
additional arguments depending on the model. EconometricModel
is the generic estimator which dispatches to continuous, nominal
or ordinal response models automatically based on the type of the
response. Other estimators are available and the following figures
illustrate some of the use cases.
The fixed effects model or within estimator can be estimated as in
figure 3 on the next page which a two-ways fixed effects model
(i.e., fixed effects for panel and time dimensions). Table 2 on page 8
shows the estimated 95% confidence intervals using Econometrics.jl,
Stata, and R’s plm package.
The random effects model can be estimated as in figure 4 on the
next page which shows estimating a random effects model with
instrumental variables. Table 3 on page 8 shows the estimated 95%
confidence intervals using Econometrics.jl, Stata’s reghdfe module,
and R’s plm package.
The sysdsn1 Stata example health insurance data set is used to
illustrate the multinominal logistic regression when the response is
nominal as seen in figure 5 on the next page. A comparison with the
estimates for the 95% confidence intervals between Econometrics.jl
and Stata is shown in table 4 on page 9.
The fullauto Stata example automobile models data set is used to
illustrate the proportional ordinal logistic regression when the re-
sponse is ordinal as seen in figure 6 on the next page. A comparison
with the estimates for the 95% confidence intervals between Econo-
metrics.jl, Stata, and R’s MASS is shown in table 5 on page 9.
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Fig. 1: Estimation of the pooling estimator

Fig. 2: Estimation of the between panel estimator

Fig. 3: Estimation of the within estimator with multiple fixed effects

5.2 Should Software be Dummy-Proof?
Statistical software developers play a very powerful role in shaping
culture and norms. For example, whether to default to maximum
likelihood estimation (MLE) or restricted maximum likelihood es-
timation (REML), can shape not only choices by practitioners, but
by stakeholders, regulatory agencies, and expected components for
reports. These changes may be good or bad depending on the case.
For example, advances in econometrics are rarely widely adopted
without buy-in from software developers. The following discussions
will survey some of the decisions relevant to Econometrics.jl.
Should software be dummy-proof? Many times software develop-
ers have to choose between exposing users to make mistakes on
their own volition or put safeguard against potential misuses by
restricting behavior that may be correct under rare scenarios. For

Fig. 4: Estimation of the random effects model

Fig. 5: Estimation of the multinomial logistic regression

Fig. 6: Estimation of the proportional odds logistic regression
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example, a basic tool might allow users to mix and match link and
distributions in a GLM settings even if the combinations are nonsen-
sical. A safer approach would be to restrict combinations to those
“safe” combinations such as distributions with canonical links. The
trade-off occurs when users may encounter a specification that while
uncommon it may be the correct one for that particular model. Cur-
rently, Econometrics.jl takes a conservative approach that provides
“dummy-proof” experience as well as ease of use. For example,
rather than requiring users to specify the model, the estimator is in-
ferred based on the type of the response and information provided as
long as it is unambiguous. Other examples of this approach include
auto-promoting model statistics such as the coefficient of determina-
tion to a pseudo-version for non-linear models (a generalization of
the linear case), but providing a not a number (NaN) value for in-
strumental variable models or those that do not include an intercept.
Similarly, the software will promote terms to full rank as required.
The formula term and coefficient table provide all the information
needed to figure which if any feature was suppressed.
The decision to adhere to a common API has various benefits. For
example, being able to interact and query models consistently en-
ables packages that enhance the experience providing features such
as diagnostics (i.e., statistical tests, plots) or convenience tools for
dissemination such as LATEX code for results. Currently, the ecosys-
tem still demands certain functionality to rely on internals which
forces code to be less generalizable (e.g., CovarianceMatrices.jl only
supports GLM models and relies on internals rather than a common
API).
Econometrics.jl has as a goal to make opinionated decisions after
careful consideration. Consider for example whether to report statis-
tics using finite-sample statistics (t-distribution, F-distribution) or
asymptotic equivalent counterparts (Normal, Chi squared). These
tend to have negligible effects in most applications, but other de-
cisions such as degrees of freedom may have larger consequences.
One case is how software computes the degrees of freedom for
instrumental variables or absorbed variables depending on the con-
text (e.g., main regression or auxiliary regression for estimating
error components). Refinements and robustness checks can also
contribute to a better analysis such as verifying gaps for time variant
operations such as in first-difference or purging singletons and other
degree of freedom adjustments [7].

5.3 Best Practices
Econometrics.jl adopts the best practices standards for open-source
statistical software. These include adhering to semantic versioning
(semver) for descriptive versioning, continuous integration for devel-
opment, software validation through a comprehensive code coverage
and test suite, and lastly online hosted documentation for the public
API.4

6. Conclusion
Econometrics.jl is a new addition to the Julia ecosystem that brings
highly demanded functionality concerning longitudinal estimators
and discrete choice models. This study serves as a complement to
the software documentation providing context to the development,
design considerations, and roadmap of the project. A philosophical
motivation for the project is to make econometrics accessible to
practitioners not only through functionality, but transparency in
the code readability, replicability, and correctness. For example,

4https://nosferican.github.io/Econometrics.jl/stable

transparent well-written code is easier to maintain, inspect / audit,
and can be useful for learning and teaching.
Community contributions and feedback are highly encouraged in
order to best continue developing the project. Some features I would
like the project to support in the future include more advanced esti-
mators such as: (1) choice-variant categorical response models, (2)
count/rate models such as zero-inflated, and (3) censored/truncated
response models. Econometrics.jl is ISC licensed and available at
the GitHub repository. The package is registered in the official Julia
registry (General); as such it can be installed using the Julia package
manager.
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Table 1. : Pooling and Between Estimators

Model Parameter Econometrics.jl Stata R (plm)

Pooling

Intercept 0.0102 0.0271 0.0102 0.0271 0.0102 0.0271
PrbConv -0.0020 -0.0003 -0.0020 -0.0003 -0.0020 -0.0003
AvgSen -0.0003 0.0008 -0.0003 0.0008 -0.0003 0.0008
PrbPris 0.0113 0.0434 0.0113 0.0434 0.0113 0.0434

Between

Intercept -0.0417 0.0324 -0.0417 0.0324 -0.0412 0.0319
PrbConv -0.0073 0.0002 -0.0073 0.0002 -0.0072 0.0002
AvgSen -0.0015 0.0032 -0.0015 0.0032 -0.0014 0.0031
PrbPris 0.0070 0.1390 0.0070 0.1390 0.0079 0.1381

Confidence intervals at the 95% level using the observed information matrix variance covariance estimator.

Table 2. : Absorbing Panel or Panel and Temporal Indicators

Model Parameter Econometrics.jl Stata (reghdfe) R (plm)

Within PID

Intercept 0.0274 0.0355 0.0274 0.0355
PrbConv -0.0004 0.0004 -0.0004 0.0004 -0.0004 0.0004
AvgSen -0.0002 0.0003 -0.0002 0.0003 -0.0002 0.0003
PrbPris -0.0093 0.0066 -0.0093 0.0066 -0.0093 0.0066

Within PTID

Intercept 0.0279 0.0360 0.0279 0.0360
PrbConv -0.0003 0.0005 -0.0003 0.0005 -0.0003 0.0005
AvgSen -0.0004 0.0002 -0.0004 0.0002 -0.0004 0.0002
PrbPris -0.0070 0.0089 -0.0070 0.0089 -0.0069 0.0089

Confidence intervals at the 95% level using the observed information matrix variance covariance estimator.

Table 3. : Random Effects and Instrumental Variables

Model Parameter Econometrics.jl Stata R (plm)

Random

Intercept 0.0257 0.0362 0.0257 0.0362
PrbConv -0.0004 0.0004 -0.0004 0.0003 -0.0004 0.0004
AvgSen -0.0002 0.0003 -0.0002 0.0003 -0.0002 0.0003
PrbPris -0.0081 0.0078 -0.0080 0.0078 -0.0093 0.0066

IV Random
Intercept -0.0097 0.0852 -0.0096 0.0851 -0.0096 0.0851
PrbConv -0.0004 0.0004 -0.0004 0.0004 -0.0004 0.0004
AvgSen -0.0059 0.0045 -0.0059 0.0045 -0.0059 0.0045

Confidence intervals at the 95% level using the observed information matrix variance covariance estimator.
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Table 4. : Multinomial Logistic Regression

Response Parameter Econometrics.jl Stata

Indemnity

(Intercept) -0.3753 0.9148 -0.3740 0.9134
Age -0.0239 0.0004 -0.0239 0.0004

Gender: Male 0.1635 0.9599 0.1643 0.9591
Nonwhite 0.5107 1.4389 0.5116 1.4380

Site: 2 -0.2998 0.5258 -0.2989 0.5250
Site: 3 -1.0356 -0.1404 -1.0347 -0.1412

Prepaid

(Intercept) -2.4502 -0.1237 -2.4479 -0.1260
Age -0.0303 0.0147 -0.0302 0.0146

Gender: Male -0.2698 1.1736 -0.2684 1.1721
Nonwhite -0.6188 1.0530 -0.6172 1.0513

Site: 2 -2.1356 -0.2875 -2.1338 -0.2894
Site: 3 -0.9272 0.5115 -0.9257 0.5101

Confidence intervals at the 95% level using the observed information matrix variance covariance estimator.

Table 5. : Proportional Odds Logistic Regression

Parameter Econometrics.jl Stata R’s MASS

Foreign 1.3168 4.4768 1.3472 4.4464 1.4111 4.5293
Length 0.0374 0.1282 0.0383 0.1274 0.0395 0.1292
MPG 0.0900 0.3716 0.0927 0.3689 0.0986 0.3781

(Intercept): Poor | Fair 6.8343 29.0206 7.0473 28.8076
(Intercept): Fair | Average 8.6814 31.0487 8.8962 30.8340

(Intercept): Average | Good 10.6949 33.5117 10.9140 33.2926
(Intercept): Good | Excellent 12.9204 36.4639 13.1465 36.2378

Confidence intervals at the 95% level using the observed information matrix variance covariance estimator.
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