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ABSTRACT
HydroPowerModels.jl is a Julia package for solving multistage,
steady-state, hydro-dominated, power network optimization prob-
lems with stochastic dual dynamic programming (SDDP). Our
state-of-the-art open source tool is flexible enough for practition-
ers in the electrical sector to test new ideas in an efficient way. This
tool was made possible by the Julia language and the surrounding
ecosystem of packages. We use JuMP, a package for mathemat-
ical programming modeling; PowerModels.jl, a JuMP-extension
for power network optimization; and SDDP.jl, another extension
that implements the SDDP algorithm.
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1. Introduction
The hydrothermal dispatch problem is important for the planning
and operation of hydro-dominated electrical systems such as the
Brazilian national grid. The objective is to coordinate generation,
energy distribution, and hydro-storage management in order to
minimize the cost of operation. In this context, the hydrother-
mal dispatch problem is a medium-term planning problem where
uncertainties related to the hydrology (i.e., rainfall and other in-
flows) of the hydroelectric plants and consumer-demand have fun-
damental importance. Generation takes two main forms: i) hydro-
generation with a low marginal cost, and ii) thermal-generation,
with a high marginal cost. However, in hydro-dominated systems
such as Brazil, there is often insufficient capacity of thermal gener-
ation to meet demand. Thus, the system-operator faces a trade-off
between using water for cheap generation in the present, against
conserving water for future periods of drought. Because of this
trade-off, the hydrothermal dispatch problem is often modeled as
a multistage stochastic problem [16, 14, 17].
Solving multistage stochastic programs, however, is a challenging
numerical problem. The solution of the problem is intractable and
common approximations such as stochastic dynamic programming
[2] [3] can suffer from high dimensionality (frequently referred as

the curse of dimensionality). One method that partially overcomes
the curse of dimensionality is the stochastic dual dynamic program-
ming algorithm of [16].
A number of programs implementing SDDP are in-use around the
world, ranging from unpublished implementations in academic in-
stitutions to professional software such as the product developed by
PSR, a software and consulting company, also called SDDP1 [18].
However, until recently, there was no fast, reliable, and open-source
implementation of the SDDP algorithm. Without such a tool, re-
searchers and practitioners have not had a common ground for the
discussion and analysis of different hydrothermal dispatch formu-
lations and their solutions.
The objective of this work is to build an open source tool, called Hy-
droPowerModels.jl, that can be this common ground. HydroPow-
erModels.jl can be used to assess the impact of modeling choices
during the planning of a hydrothermal power system. These choices
include the usage of different network formulations, the consider-
ation of different risk measures, and the planning horizons for un-
certain future costs. Addressing these issues provides the research
community and the energy industry with a powerful tool for the
efficient design of hydrothermal power systems.
To develop a tool that can be used by both researchers and indus-
try professionals, we take advantage of the Julia language [4] and
two main packages: PowerModels.jl [7], which implements power
flow models for electrical dispatch, SDDP.jl [8], which implements
the stochastic dual dynamic programming algorithm. Both Power-
Models.jl and SDDP.jl handle their respective optimization models
through JuMP.jl [9], a Julia package for mathematical optimization.
JuMP.jl makes it simple to write complex optimization problems
and solve them with numerous solvers. HydroPowerModels.jl takes
advantage from the fact that PowerModels.jl and SDDP.jl were not
only developed in Julia, but also deeply rely on JuMP.jl to build and
solve mathematical optimization problems. SDDP.jl is used to spec-
ify the hydro storage dynamics and stochastics of inflows, renew-
ables and loads. PowerModels.jl is used to provide multiple net-
work dispatch formulations as a starting point for the HydroPow-

1Note that the “SDDP” acronym is used to denote a software product, the
original algorithm of [16], and a more general class of algorithms inspired
by the original SDDP algorithm.
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erModels.jl formulation that couples the electrical constraints with
hydro constraints and uncertainty.
The next sections are organized as follows: 1) A brief understand-
ing of multistage stochastic problems and decisions under uncer-
tainty; 2) A presentation of the modeling formulation and problem
specification; 3) Different simplifications of the model; 4) An ex-
planation of the solution method (SDDP); 5) A comparison of exist-
ing alternative solution implementations and listing of the proposed
package functionalities; 6) A case study to clarify usage.

2. Multistage Stochastic Optimization
Stochastic Programming (SP) [20] is a branch of optimization un-
der uncertainty, where the realization of some random variables (ω)
influence the conditions of the problem and consequently the opti-
mal decisions. Uncertainty relates to the probability distributions
of parameters and may be incorporated to the problem in various
manners.
One class of simple stochastic programs is known as a two-stage
problem with recourse. It can be formulated as follows:

1st Stage

min
x

cTx+

Q(x)︷ ︸︸ ︷
ρ[Q(x, ω)]

s.t. x ∈ X

2nd Stage

Q(x, ω) =


min
u

gTu

s.t. Au = b(ω)−Ex
u ∈ U

 .

The objective of the first stage is composed of an immediate cost
term cTx and a cost-to-go function Q(x). Q is a function of some
decision variables of the first stage x that fix the state of the sec-
ond stage (its feasible region). These variables are called state vari-
ables. First stage decisions are made under uncertainty, while the
decision variables of the second stage u are chosen after the real-
ization of the variable ω (under a deterministic scope) and are so
called recourse variables. The function ρ is known as a risk mea-
sure [1] and is commonly assumed to be the expectation operator
E.
The goal of this problem is to find an optimal stage decision x and
an optimal second-stage decision u for each realization of ω condi-
tioned on x. Collectively, this set of decisions is known as a policy.
The two-stage problem discussed above naturally extends to a mul-
tistage problem via recursion. A multistage stochastic program
with T stages can be formulated as follows:

min
x1∈X1

f1(x1)+

ρ[ inf
x2∈X2(x1,ω2)

f2(x2, ω2)+

ρ[...+ ρ[ inf
xT ∈XT (xT−1,ωT )

fT (xT , ωT )]...]]

Assuming the problem is linear, we have:

Xt(xt−1, ω) =
{
xt ≥ 0 : Atxt = bt(ω)−Etxt−1

}
ft(xt, ω) = cTt xt

In this setting, the uncertain data ω1, ..., ωT is revealed gradually
over time. The sequence ωt ∈ Rdt of data vectors is viewed as a

stochastic process, i.e., as a sequence of random variables with a
specified probability distribution.
Just like in the two stage problem, there are state variables at every
stage that partially impact the objective through the risk measure
of the subsequent stages optimal values. The policy optimized by
this problem is a mapping from the realized stochastic process to
the decisions for each stage.
Using dynamic programming [2], the nested formulation of a multi-
stage stochastic program may be represented by the following Bell-
man recursion for each stage:

Qt(xt−1, ωt) =


min
xt

cTt xt + ρt+1[Qt+1(xt, ωt+1)]

s.t. Atxt = bt(ωt)−Etxt−1 [πt(ωt)]

xt ≥ 0


For the purpose of simplicity, we assume that QT+1(·, ·) = 0.
In these equations, the optimal value at stage t depends on previous
decision xt−1 and the realization of the data process ωt. Finally, the
optimal value of the first stage problem gives the optimal value of
the corresponding multistage problem.

3. The Hydrothermal Dispatch Problem
The hydrothermal dispatch problem is a multistage stochastic op-
timization problem that comprises an optimal power flow (OPF)
problem and the hydro storage management for multiple periods
and scenarios.
Introduced by [6], the OPF problem extends the economic dispatch
problem, where the goal is to plan the operation of an electrical
power system by determining the contribution of available energy
sources in supplying demands, to include constraints representing
the power flow equations, resulting in a more realistic model of the
dispatch.
Since its introduction, the OPF problem has received additional
constraints to better represent power systems. The adopted version
of the PowerModels.jl package, is a AC Optimal Power Flow (AC-
OPF) problem. The AC Power Flow constraints implement voltage
bounds, generation bounds, nodal conservation of power, power
flow on lines and thermal limit of the lines (power flow limit) for
an alternating current system. Different from original OPF formu-
lations, support was also added for multiple load and shunt com-
ponents on each bus together with a line charging that supports
conductance and asymmetrical values.
Besides the modifications from PowerModels.jl, deficit variables
to work as slack to the attendance of each load have frequently
been used by the electrical sector and will be incorporated in our
package. This variables allow a more detailed evaluation of the cost
of not attending some demands.
The optimal dispatch tries to find the most economic use of system
resources and is the objective function of an OPF. However, in a
hydrothermal power system, where water is a main resource and
its inflow is uncertain, risk averse planning is an important task
to ensure the lowest cost operation. The necessary hydro storage
management to attend demand during periods of scarcity adds an
extra layer of decisions and constraints.
Reservoir operation is a problem composed by the balance of in-
coming and outgoing flow of water as well as its usage to generate
power. Since many storage facilities are linked through rivers, this
problem may be simply viewed as a directed flow graph where each
node in the graph represents a storage reservoir. A constraint binds
the power generation of generators using water as fuel to the out-
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flow of the respective storage. Operation is also restricted by the
limits of reservoir volume and outflow.
The solution of this problem returns an operation policy represent-
ing the optimal generation and hydro management possible given
the horizon studied and the scenarios considered.
As it is common for multistage problems, we will define the under-
lying sub-problem (i.e., Q) that unifies the OPF problem with the
hydro-thermal dispatch problem.

3.1 The Mathematical Model
Following the notation chosen by the PowerModels.jl package, the
sets and parameters used to define the sub-problem are listed with
the addition of those created for the hydro storage management and
the data for the state of the sub-problem:

Sets.

N - buses
R - reference buses

E,ER - branches, forward and reverse orientation
G,Gi - generators and generators at bus i ∈ N
L,Li - loads and loads at bus i ∈ N
S,Si - shunts and shunts at bus i ∈ N
H,HG - reservoirs and reservoirs with power generation

HU
h ,H

S
h - upstream reservoirs out-flowing and spilling to h ∈ H

GH
h - generator at reservoir h ∈ H

Data.

Sgl
k , S

gu
k ∀k ∈ G - generator complex power bounds

c2k, c1k, c0k ∀k ∈ G - generator cost components

vli, v
u
i ∀i ∈ N - voltage bounds

Sd
k ∀k ∈ L - load complex power consumption
Y s
k ∀k ∈ S - bus shunt admittance
Yij , Y

c
ij ∀(i, j) ∈ E - branch pi-section parameters

Tij ∀(i, j) ∈ E - branch complex transformation ratio
suij ∀(i, j) ∈ E - branch apparent power limit

iuij ∀(i, j) ∈ E - branch current limit

θ∆l
ij , θ

∆u
ij ∀(i, j) ∈ E - branch voltage angle difference bounds

νh ∀h ∈ H - reservoir volume limit
uh ∀h ∈ H - reservoir outflow limit

ph ∀h ∈ HG - hydro generation production factor
cd - deficit cost
cs - spillage cost

Operators.

< - real part of a complex number
∠ - angle of the polar representation of a complex number
(·)∗ - complex conjugate
| · | - absolute value

States.

νh,t−1 ∀h ∈ H - incoming reservoir volume
ah ∀h ∈ H - reservoir inflow

For simplicity the stage index t of the sub-problem is omitted from
every data and variable with exception of the incoming reservoir
volume νh,t−1 (in order to differentiate it from the outgoing reser-
voir volume νh).
Notice that, as usual, alternating components (i.e. voltage, power
generation, power demand and power flow) are modeled using
complex numbers to fully represent the process.
Bellow, the decision variables of our problem:

Variables.

Sg
k ∀k ∈ G - generator complex power dispatch
Vi ∀i ∈ N - bus complex voltage

Sij ∀(i, j) ∈ E ∪ER - branch complex power flow
Uh ∀h ∈ H - reservoir outflow
Sh ∀h ∈ H - reservoir spillage
νh ∀h ∈ H - reservoir volume
Di ∀i ∈ N - bus complex deficit
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A complete mathematical model of the sub-problem is as follows,

Qt(νt−1, ωt) =

minimize:
∑
k∈G

c2k(<(Sg
k))

2 + c1k<(Sg
k) + c0k+∑

i∈N

cd<(Di) +
∑
h∈H

csSh + ρt+1[Qt+1(νt, ωt+1)]

(1a)

subject to:
∠Vr = 0 ∀r ∈ R (1b)

Di +
∑
k∈Gi

Sg
k −

∑
k∈Li

Sd
k −

∑
k∈Si

Y s
k |Vi|2

=
∑

(i,j)∈Ei∪ER
i

Sij ∀i ∈ N (1c)

Sij =
(
Yij + Y c

ij

)∗ |Vi|2

|Tij |2
− Y ∗ij

ViV
∗
j

Tij

∀(i, j) ∈ E

(1d)

Sji =
(
Yij + Y c

ji

)∗ |Vj |2 − Y ∗ij
V ∗i Vj

T ∗ij
∀(i, j) ∈ E

(1e)

|Sij | ≤ suij ∀(i, j) ∈ E ∪ER (1f)

θ∆l
ij ≤ ∠(ViV

∗
j ) ≤ θ∆u

ij ∀(i, j) ∈ E (1g)

νh + Uh +Sh = νh,t−1 + ah(ωt)+∑
k∈HU

h

Uk +
∑

k∈HS
h

Sk ∀h ∈ H (1h)

Uhph = <(Sg

GH
h

) ∀h ∈ HG (1i)

Sgl
k ≤ S

g
k ≤ S

gu
k ∀k ∈ G (1j)

vli ≤ |Vi| ≤ vui ∀i ∈ N (1k)
0 ≤ νh ≤ νh ∀h ∈ H (1l)
0 ≤ Uh ≤ uh ∀h ∈ H (1m)

2

The objective of the sub-problem (1a) is to minimize the costs of
real power generation, cost of deficit from the real energy supply,
cost of spillage (in order to try and avoid degenerate solutions) and
the cost-to-go function Q.
Constraint (1b) fixes reference buses complex voltage angles to
zero, as the remaining angles will be defined accordingly.
Constraint (1j) bounds the complex power generation, representing
the physical limitation of generators and fuel source availability.
The magnitude of the complex voltage is bounded in constraint (1k)
by restricting the absolute square of its value. The upper limit alone
defines a circular feasible region for each voltage, while the lower
limit reshapes the region as a ring, bringing a non-convexity to the
problem.
The Branch complex power flow is formulated in (1d) and (1e),
dependent on the voltage at each end and implementing elements
of line charging and the effects of transformers. The power flow is
bounded in (1f) through its absolute value. These power limits of
the lines represent thermal limits and stability limits.

2Note that the elements of E are pairs of elements of N, so, in equations
(1d) and (1e), variables defined over N are indexed by elements of E.

Constraint (1c) implements Kirchhoff’s Current law (KCL), which
refers to power preservation at each node, balancing generation, de-
mand, flow and shunt. Although, deficit variables have been added
in order to guarantee feasibility in case of lack of power availability.
Angle difference between buses are bounded in (1g). The reason
for the limits is to approximate the transient stability constraints of
power flowing in branches. These restrictions refer to the synchro-
nism among machines at each end of a line. The limits depend on
the equipment installed and the system configuration.
An important variable in an economic dispatch problem is the
marginal cost of energy at each bus, which, in optimality, is de-
termined by the dual value of (1c). This value is also referred to
as a shadow price, local marginal price (LMP), or nodal price. Re-
gardless, this value represents the cost of an extra unit of energy in
a bus.
The conservation of water equation is implemented in (1h), where
the water stored at a reservoir should equal the water previously
stored plus the incoming flow (precipitation and water from up-
stream reservoirs), minus the portion used to generate energy and
the one spilled away.
The binding of the hydro real power generation and water used
is done in (1i), which depends on the efficiency of the generator
modeled through a production factor.
Constraints (1l) and (1m) bound respectively the volume of water
stored and the amount of water used in generation. These limits are
defined by the capacity limit of storage facility and the equipment
installed.
Note that problem (1) is a nonlinear, non-convex optimization prob-
lem. This will have important implications for our solution ap-
proach.

4. Network Formulations
The AC Optimal Power Flow problem, defined in (1), captures the
nonlinear and complex nature of the power flow. However, solving
a nonlinear problem (NLP) is hard. Guaranteeing global optimal-
ity often involves an extensive number of comparisons and, thus, it
is not done. Local optimums are used instead, providing inconsis-
tent solutions. Along with the scarcity of efficient NLP solvers and
the numerical issues created by large problem instances, the depth
of research using AC-OPF is reduced. Besides, the requirement of
convexity frequently needed for applications limit its usage. Hence,
many approximations and relaxations have been developed for the
AC-OPF [15]. In general these are simplifications and are easier to
solve, but they ignore some parts of the problem. As a result, it is
imperative to understand and weigh the advantages and compro-
mises of each formulation when choosing one to use in a model.
The Linear DC approximation is a linear formulation which par-
tially represents power voltage. This formulation makes some as-
sumptions for linearization purposes: voltage magnitudes are suf-
ficiently near nominal value (one), angle differences are close to
zero, and there are practically no power losses. In all effects, a
purely active power system linear model. Still it is important to
notice that, while this model seeks to approximate the feasible re-
gion of the AC power flow, it may not include the entire feasible
region, including the global optimum.
Instead of approximating parts of the power system, it is possible
to relax some of the nonlinear power flow constraints. The result-
ing relaxations, when solved to optimality, provide lower bounds to
the original problem because their feasible sets include all the so-
lutions of the original problem. Different convex relaxations were
proposed for the optimal power flow problem, here we highlight
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some of the most important ones. Convex relaxations are specially
useful because their solution can be proved to be optimal.
The Copper Plate is the simplest linear relaxation and models the
system by a centralized energy pool, relaxing transmission lines
limits and the Kirchhoff’s laws. Easily implementable and solvable,
this is the most simplified linear formulation, neglecting the entire
grid of the problem. However, because of the simplifications of this
model it produces only one shadow price, i.e. the marginal price
of energy in each node of the network are equal. This may send a
distorted signal to the agents responsible for the system, and may
return the most unfeasible solution across all formulations.
Another linear relaxation, the Transportation model, or tube model,
extends Copper Plate by adding line limits. Locational restric-
tions are better represented and the value of transmission lines are
clearer. Although, by completely ignoring the power voltage, net-
work design becomes less relevant and incorrect system analysis is
possible.
The SOC relaxation is a non-linear convex relaxation that is tighter
than the linear versions, i.e., its feasible region is strictly contained
inside them. This formulation relaxes the non-convex constraints of
the problem, composed by the bilinear product of the voltage vari-
ables, by neglecting the phases of the voltages and saving only their
branch wise difference and magnitudes. The resulting problem may
be specified as a second order cone formulation, hence its name.
The SDP relaxation deals with the non-convex constraints of the
problem by using the fact that they define a positive semi-definite
matrix with rank 1. The relaxation comes from removing the rank
1 restriction. The feasible region of this formulation is contained
within the feasible region of the SOC relaxation, providing a better
bound to the original problem.
The QC relaxation exploits the polar form of the non-convex con-
straints and uses known convex envelopes to relax each non-convex
term present. These envelopes retain stricter links between the volt-
age variables, producing a tighter relaxation than the SOC formu-
lation.
These, and other relaxations, provide a good alternative to solve the
original problem. Besides bounding the optimal value of the orig-
inal problem, they have sufficiently good solutions for real world
applications. In fact, by being convex, these relaxations are suitable
to be used in many solution methods for multistage problems, for
instance SDDP for which convergence is guaranteed if subproblem
are convex.
The PowerModels.jl package, a framework for steady-state power
network optimization, is able to construct these and other math-
ematical programming formulations of the OPF problem. Since
PowerModels.jl uses JuMP.jl to construct these formulations, they
can be passed to a variety of solvers. This allows the user to easily
choose an approximation or relaxation, solve it, and then discuss
and compare the impacts of using different relaxations and approx-
imations in the planning and operation of the economic dispatch
problem.

5. Solution method
As we have seen, the hydrothermal dispatch is a complicated prob-
lem with different network formulations. The OPF problem, is only
a part of a sub-problem composing a multistage stochastic program.
As discussed previously, solving a multistage stochastic program
has its own difficulties, and requires specific and efficient algo-
rithms.
In a multistage stochastic program, we are faced with a
cost-to-go function: ρt+1[Qt+1(xt, ωt+1)]. The issue is
that ρt+1[Qt+1(xt, ωt+1)] also depends on a cost-to-go

ρt+2[Qt+2(xt+1, ωt+2)], and the evaluation of those functions
can be expensive.
The crucial step that facilitates the solution of these problems is to
construct approximations of the cost-to-go functions, recursively,
going backward in time. Thus, the optimal value of the first stage
problem approximates the optimal value of the corresponding mul-
tistage problem.
For the construction of this approximation a widely used method
is dynamic programming, which evaluates the function in a range
of discrete values of the state variable for further interpolation.
However, this method becomes intractable with the growth of the
state dimension (commonly referred as the curse of dimensional-
ity of dynamic programming). A solution for this was proposed by
[16] with a method called stochastic dual dynamic programming
(SDDP).
The methodology, simply posed, approximates the cost-to-go func-
tion by the maximum of a set of linear hyper-planes called cuts.
SDDP is based on an interactive construction of the cost-to-go
function approximations. The procedure may be divided in sub-
sequential forward and backward passes, where the first chooses
points in which the second will update the current approximation
of the functions. For a detailed discussion of the SDDP algorithm,
see [16, 8].
Other solution algorithms have been proposed to solve multistage
problems, such as progressive hedging and nested Benders. How-
ever, for most large instances, none has proven to be viable and
efficient alternatives. SDDP has been extensively used to solve and
plan hydrothermal dispatch operations since its original publica-
tion.
On the other hand, this method is a complex and difficult to imple-
ment algorithm. Moreover, to make it flexible enough for different
applications while not compromising performance is a main issue.
Hence, the historical scarcity of reliable and open software versions
has limited development and discussions of its contributions. Yet,
new and efficient implementations have risen with the advance of
open-source languages as the Julia language.
One such implementation is SDDP.jl, a Julia/JuMP package for
solving large multistage convex stochastic optimization problems
using SDDP. It provides a practical and efficient way to find the
solution to the hydrothermal dispatch problem. With this package
it was possible to define the dynamics and random variables of our
problem and solve the instantiated model with the SDDP algorithm.

6. HydroPowerModels.jl
HydroPowerModels.jl uses the PowerModels.jl and SDDP.jl pack-
ages to implement and solve different hydrothermal dispatch for-
mulations. It provides an interface to easily solve and simulate hy-
drothermal dispatch models and allows the creation of a collection
of hydrothermal problems described in input files for the package
(following the PowerModels.jl standard), thereby helping the dis-
cussion of methodology and the resulting policies for specific case
instances.
In contrast to the previously available official software for hy-
drothermal dispatch models, the proposed package is part of an
academic open-source effort. This helps to promote the continuous
improvement of models and solution algorithms for the research
community.
Other academic implementations of SDDP have being developed
and may be applied to the hydrothermal dispatch problem. How-
ever, the advances of the Julia Language and JuMP.jl are a much
more adequate framework than those of MATLAB [5] or Python
[19, 12]. Moreover, a free and open-source tool can be of great help
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for the research community alternatively to commercial solvers as
[13] and the renowned version from PSR Inc.
Additional implementations of SDDP are also available in Julia
[10] [11], but SDDP.jl [8] has proven an easy to learn, efficient
version of SDDP that is flexible enough for the purposes of the
HydroPowerModels.jl package.
HydroPowerModels.jl is composed of different and useful function-
alities, from compact case sharing to dispatch solution results visu-
alizations. A work-flow of a simple usage of the package helps to
give a basic overview:

—Load case data from input files describing: Power network data;
Reservoir facilities details and water network data; Inflow sce-
narios.

—Receive case parameters: Power network formulation; Number
of stages; Number of hours in Stage and optimizer to solve the
sub-problems.

—Build the multistage, hydrothermal steady-state power network
optimization problem.

—Run SDDP method to approximate the cost-to-go functions.
—Simulate the policy.

A code example is presented in the next subsections to help
clarify the usage of the package. Although, for a more ex-
tensive tutorial of the package, a detailed documentation is
made available in https://andrewrosemberg.github.io/
HydroPowerModels.jl/latest/.

6.1 Usage
The usage of HydroPowerModels.jl follow the paradigms of the
Julia language and the structure of the dependent packages.
In order to access the available functionalities, first import Hy-
droPowerModels.jl and an adequate solver:� �
using HydroPowerModels
using GLPK� �
Load a case by passing the folder containing the input files
(PowerModels.json, hydro.json, and inflows.csv):� �
data = HydroPowerModels . parse_folder (

" case3_folderpath ")� �
Use create_param to create a set of problem parameters. For
example, a 12-stage problem using the DC approximation can be
specified as follows:� �
params = create_param (
stages = 12 ,
stage_hours = 168 .0 ,
model_constructor_grid = DCPPowerModel ,
optimizer = with_optimizer ( GLPK . Optimizer ))� �

Then, build the Model and execute the SDDP train method:� �
m = hydrothermaloperation ( data , params );

HydroPowerModels . train (m)� �

Finally, simulate the performance of the policy with 1000 Monte
Carlo scenarios:� �
# Simulate 1000 instances
results = HydroPowerModels . simulate (m, 1000 );� �
� �

Dict { Any , Any } with 5 entries :
" simulations " => Dict [ Dict { Any , Any }( Pair { Any ,...
" data " => Dict { Any , Any }[ Dict { Any , Any }(...
" params " => Dict { Any , Any }( Pair { Any , Any }(...
" machine " => Dict (" cpu "=>" Intel (R) Xeon (R )...
" solve_time " => 205.31247� �
7. Case Study
For a case study, consider a the hydrothermal dispatch of a realistic
system with the following specifications:

—Number of buses: 166
—Number of loads: 286
—Number of generators: 145
—Number of branches: 235

In order for a qualitative view of the system, the package disposes
a graph illustration plot:� �
plot_grid ( data , node_label = false )� �

Fig. 1. Network Grid graph

Figure 1 shows the installed power available in the network
(grouped by bus) using a logarithmic scale. The red nodes repre-
sent the thermal generators, the blue represent the hydro genera-
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tors. For comparison purposes, orange nodes have been added that
are equivalent to average real power demands.
As we can see from the plot of the grid 1, this appears to be a well
balanced case, with similar installed hydro and thermal power ca-
pacity and with a reasonable average demand. In addition, it is a
well distributed network, without any evident critical sections sus-
ceptible to impacting power flow problems. Those facts are indi-
cations of a significant hydro-generation optimal dispatch without
large complications.
For this study, a 52 stage horizon planning and simulation have
been executed using the following case parameters:

—Number of stages: 52

—Number of hours in stage: 168

—Network Formulation: Transportation model relaxation

7.1 Results
The simulate command returns a detailed dictionary of the execu-
tion. In order to plot those results returned by the simulate function,
you may choose from a variety of methods, including the function
plot_aggregate_results(). This function receives the dictio-
nary results and generates the most common aggregated variable
plots, which best summarize simulations of a hydrothermal dis-
patch:� �
plot_aggregated_results ( results )� �
Figures 2 to 9 show the output from the above command. As men-
tioned, the plots are of aggregated quantities, but the methods used
to aggregate were chosen in order to help analysis. For example: the
final nodal price is an average of nodal prices weighted by the con-
tribution of local loads to the total demand; reservoir volume was
grouped weighted by the amount of energy that could be produced
by the stored water (as was the inflow of water).
As expected the optimal dispatch of the simulations uses more
hydro-generators, however it needs thermal-generators to met all
demands without deficit. On this hydro-dominated system, the un-
certain inflow is a driving factor of optimal dispatch. As we can see
in Figure 9, the inflow has a strong seasonality component, result-
ing the significant seasonality trait observable in the variables of
the policy simulations. 2-3, 5-8.
Similar studies are possible for any case and formulation chosen,
helping to analyze existing realistic cases and assess impacts of fu-
ture system changes. For example, we reran the study using a SOC
relaxation to compare results. Most quantities analyzed, as those
presented in the aggregated results, are similar, but operation costs
differ as it is observable in figures 10,11. This is expected, since the
SOC relaxation is a more realistic representation of reality.
Moreover, it is important to point out this extra cost would be even
bigger if we used the policy of the transportation model to operate
the SOC model in the simulations. In other words, there is a hidden
cost when planning a dispatch associated with the fact we are not
evaluating costs on the actual system we want to operate.
Therefore, measuring the impacts of possible simplifications is a
needed step in discussing hydrothermal economic dispatch. Hy-
droPowerModels.jl intends to provide a common ground for dis-
cussions and analysis and a easy to use tool for research and appli-
cations.

Fig. 2. Thermal Generation

Fig. 3. Load Weighted Average Nodal Price

Fig. 4. Deficit
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Fig. 5. Hydro Generation

Fig. 6. Reservoir Outflow

Fig. 7. Reservoir Spillage

Fig. 8. Volume Reservoir

Fig. 9. Inflow

Fig. 10. Simulation Costs Transportation
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Fig. 11. Simulation Costs SOC
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