
Locality-Aware Message Passing with ArrayChannels.jl
Rohan McLure1 and Josh Milthorpe1

1Research School of Computer Science, Australian National University, Canberra

ABSTRACT
Performance outcomes for numerical codes involving large data
manipulation depend on efficient access of memory. We introduce
the ArrayChannels.jl library for manipulation of distributed array
data with considerations for cache utilisation patterns. In contrast
to communication constructs implemented by Julia’s remotecall,
communication in the library occur entirely in-place, improving
temporal locality. We evaluate the performance of ArrayChannels.jl
constructs relative to comparable MPI and Distributed.jl implemen-
tations of the Intel PRK, yielding improvements of up to 150%.

Keywords
Distributed, Access Locality, HPC

1. Introduction
The Julia language offers many conveniences to the development of
numerical codes that are geared towards performance. Julia favours
rapid prototyping by adopting a highly optimised JIT compilation
approach to program execution, as well as the convenience of dy-
namic dispatch for user-made functions. The implicit vectorisation
of codes massively accelerates the performance of user-defined ar-
ray access codes.
The suitability of the language for HPC applications will nonethe-
less continue to hang on the ability of programmers to deliver
strong parallel performance with relative ease. Throughout this ar-
ticle, the particular form of parallelism that we refer to is distributed
computing. While multiprocessors provide a high degree of paral-
lelism, distributed clusters can provide extremely high performance
scalability. Targeting many-core systems can serve to increase the
impact of the Julia language for HPC.
We produce the ArrayChannels.jl library, covering a variety
of parallelism patterns operating on arrays in a distributed com-
puting context, all while guaranteeing the programmer improved
access locality over default Julia constructs. Much like how a
RemoteChannel will reference a channel residing at a particu-
lar process, ArrayChannel constructs reference persistent data
buffers to facilitate cache-aware communication. All communica-
tion primitives between these constructs occur synchronously and
in-place. In-place communication causes the manipulation of mes-
sage contents following arrival to be more efficient by increasing
cache locality and so reducing the impact of memory latency. We
briefly discuss the ramifications of access locality in § 2.1
We evaluate the performance outcomes of using
ArrayChannels.jl relative to the Julia Distributed.jl

library and equivalent MPI constructs. We use a subset of the Intel
Parallel Research Kernels to obtain performance readings for both
many-core and many-node trials on HPC hardware.

In addition to performance benefits, in § 3 we demonstrate how
ArrayChannels.jl may be used to effectively generate dis-
tributed codes concerning array-manipulation with a higher degree
of productivity than current Julia primitives.

2. Background
Here we discuss the underlying mechanisms that lead to differences
in distributed performance outcomes between ArrayChannels.jl
and Distributed.jl, and provide a brief introduction to our eval-
uation benchmarks. The mechanisms that we refer to involve access
locality for processor caches, as well as discussion on the various
modes of message passing in distributed environments.
We discuss our evaluation benchmarks, including a subset of the
Intel Parallel Research Kernels.

2.1 Access Locality
Access locality [4] refers to the likelihood for memory access pat-
terns to target the same or adjacent memory regions repeatedly dur-
ing execution. We describe two aspects of access locality: tempo-
ral and spatial locality. Temporal locality refers to the proximity in
terms of timing of multiple accesses to the same memory region,
while spatial locality refers to the proximity in terms of location of
relevant data entries to one another in memory.

2.1.1 Temporal Locality. Essentially, temporal locality in part
determines the maximum amount of time for which program data
may remain at readily-accessible regions of the memory hierarchy.
When a greater proportion of the computational effort can be per-
formed on data currently residing in processor cache, the total ef-
fect of memory latency is mitigated. Alternatively, poor temporal
locality can lead to cache misses, scenarios where cache is pre-
maturely flushed, and program data must be re-fetched prior to
use, leading to more memory latency. Intuitively, programmers will
wish to ensure when possible that data structures under perpetual
use within the program remain within processor cache, so that all
modifications to this data may incur less overhead. In § 3, we dis-
cuss how in a message-passing context, how retaining a single mes-
sage buffer for repeat communication events can lead to improved
parallel performance.

2.1.2 Spatial Locality. Spatial locality represents the condition
whereby relevant program data is situated close-by in memory.
Higher spatial locality increases the effectiveness of cache pre-
fetching, as a larger proportion of cache lines will contain the nec-
essary program data. Spatial locality can be improved by storing
program data contiguously in memory. While array representations
provide a high degree of spatial locality, programmers must be
aware of the effects of striding on multidimensional arrays.

1

Proceedings of JuliaCon 1(1), 2019

2.2 Message Passing Models
Message passing provides a mode for both synchronisation and the
communication of data between processes in a parallel computa-
tion. This methodology is particularly useful when there is no no-
tion of shared memory between processes, as in the case of dis-
tributed computing. Julia implements message passing through its
Distributed.jl module in the standard library. The two main
primitives available to the user are the remotecall, as well as
Future objects. Processes may message one another by means of
a remote procedure call, whereby arguments to the remote call and
other captured variables are communicated to the recipient process.
A Future fulfils the synchronising role of a remote call, encapsu-
lating the completion state of function in execution at another pro-
cess.
A combination of these two primitives form the RemoteChannel,
which is a sort of handle to a Channel construct appearing at an-
other worker process. While a RemoteChannel may provide both
synchronous and asynchronous communication, both forms will in-
voke an eager communication model. We provide a description of
two different modes of point-to-point message passing in play in
both Distributed.jl and ArrayChannels.jl.

2.2.1 Eager Communication. In eager message passing, pro-
cesses will immediately attempt to send messages [2, 5], without
needing to first wait for the approval of the recipient process. Eager
message passing permits expensive communication operations to
be initiated prior to the arrival of a ‘ready to receive’ notification.
In various MPI implementations such as OpenMPI, this is facili-
tated by the short message protocol, which causes the message to
be copied to the output buffer when specified by the receive noti-
fication. In the case of Julia, this memory copy is not required, as
each message that arrives will have a new output buffer allocated
for immediate use.

 Recipient

 Sender

Send
Notification

Time

Data

Temporary
Buffer

Signal to
receive

message

Temporary
Buffer

Copy to Output
Buffer

Fig. 1. The eager communication model

The Distributed.jl framework causes messages to be sent in
an eager manner, even on synchronous channel constructs. While
access to a RemoteChannel may be synchronised, any attempt to
put! (or initiate sending) a reference type will fully transfer the
referenced data, but only depositing the reference pointer in the
recipient’s channel when it is signalled as able to do so. In § 4.3,
we discuss how eager message passing can provide performance
advantages under pathological examples.

2.2.2 Rendezvous Communication. Rendezvous communication
involves both sender and recipient synchronising over either mutual
acknowledgement of messaging, or on the completion of the data
transfer [2, 5]. In the rendezvous mode, data will not begin to be
transferred until both sender and receiver have each confirmed by
means of a handshake their intent to begin. While rendezvous com-
munication requires that message transfer occur at a particular time
(namely, following a successful handshake), the receiving process
may offer in their intention to receive a preferred buffer which may

be written to directly after synchronisation. In this way, rendezvous
message passing may be used to avoid an extraneous memory copy,
at the cost of additional synchronisation. While frameworks such
as Distributed.jl that utilise eager message passing may omit
the memory copy step, this mode will reduced temporal locality, as
new buffers must be selected between communication events.

 Recipient

 Sender

Handshake

Time

Confirmation

Data

Direct data
transfer

Data

Fig. 2. The rendezvous communication model

An ArrayChannel construct will require rendezvous message
passing to ensure that the same output buffer is used for each
successive communication instance. We discuss how the dif-
ferences between these two modes affect the behaviour of the
ArrayChannels.jl library in § 3.

2.3 Evaluation Techniques
To evaluate differing performance outcomes between
Distributed.jl and ArrayChannels.jl communication
nodes, we provide performance comparison on a series of bench-
marks. For an analysis of maximum obtainable data-transfer rate,
we provide the results of a two-process ping-pong benchmark. As
a projection of performance outcomes on more realistic use cases,
we compare performance readings on a subset of the Intel Parallel
Research Kernels, providing readings for a variety of core-counts
to indicate the effect of ArrayChannels.jl communication
primitives on scalability. Our scalability results are given in terms
of weak-scaling, whereby problem size increases roughly linearly
with core-count, to enable each parallel entity to operate on the
same amount of local data.

2.3.1 Intel Parallel Research Kernels. The Intel PRK [6] are a se-
ries of HPC kernels that serve to predict the performance of parallel
environments and frameworks for realistic computation tasks.
We provide performance measurements on three of these kernels,
namely Reduce, Transpose and Stencil, due to their emphasis on ar-
ray computing which is a strength of the Julia language. Moreover,
these kernels represent real data-parallelism workloads, which are
commonplace in the numerical computing applications of the lan-
guage.

2.3.2 The Reduce Kernel. The reduce kernel reduces a series of
large vectors by accumulating their vector sum into an output vector
at each iteration. For each additional core provided to the kernel,
two vectors of equal size are provided so as to provide each core
with some local computation.
In a distributed context, this is accomplished by allocating two
large vectors at each locale, computing the local sum and then
performing a distributed reduction on the resultant vector. In fig-
ure 3, reduction occurs in stages occuring at different compute
nodes for improved parallelism. In MPI, this is facilitated directly
by the MPI_Reduce directive, which causes the MPI runtime to
conduct the parallel reduction with a single destination rank using
whichever topology it deems most suitable. As the MPI Reduce

2

Proceedings of JuliaCon 1(1), 2019

Fig. 3. Distributed reduce kernel

implementation performs its work in place, our equivalent imple-
mentations in Julia attempt to duplicate this behaviour by imple-
menting the tree topology using point-to-point communication. In
§ 3.2 we comment on the utility of language directives for directly
addressing parallelism patterns.

2.3.3 The Transpose Kernel. The transpose kernel will at each
iteration transform the memory representation of a dense matrix
so that columns are stored in the row format and vice versa. In
a distributed context, where the matrix is fragmented among dif-
ferent locales, the transpose of a pair of indices may belong to a
different locale, and as such data communication is required. In
practise, the matrices are distributed into "column blocks", with
one column block given to each process. Figure 4 demonstrates
how off-diagonal regions of column blocks must be communicated
with other processes at each iteration. The colours represent the dis-
tribution of data between workers. Arrows connecting differently-
coloured regions indicate that communication must occur between
the owners of the regions.

Fig. 4. Distributed transpose kernel

At each iteration, the total amount of data that must be commu-
nicated increases quadratically with the order of the matrix, and

each worker must communicate with every other worker. This ker-
nel provides an intense stress on the efficiency of the communica-
tion model, while providing minimal arithmetic intensity.

2.3.4 The Stencil Kernel. The stencil kernel involves repeatedly
applying a point-wise operator to each element of a dense matrix,
where the point-wise operator depends on the value of neighbour-
ing data points. For a distributed context, this kernel may be par-
allelised by decomposing the source matrix into square blocks and
distributing each block to a different worker process. Applying the
stencil operator to indices that border the divisions will require the
acquisition of data from neighbouring processes, as depicted in fig-
ure 5. In the diagram, colours are used to represent the distribution
of matrix data, and green subregions represent the communication
boundaries.

`

Fig. 5. Distributed stencil kernel

The regions of data dependencies that lie on the borders between
locales are known as "ghost regions". A parameter known as the
"stencil radius" determines the width of these ghost regions, and
so total amount of data to be communicated increases linearly with
respect to the order of the matrix. Unlike the transpose kernel, the
stencil kernel requires the communication of only relatively small
amounts of data, while providing a high arithmetic intensity.

3. The ArrayChannels.jl Library
The ArrayChannels.jl library provides synchronous, in-place
communication options for message passing, utilising rendezvous
message passing. This is achieved by providing an ArrayChannel

construct encapsulating a template for the forms of array communi-
cation that must occur. Constructing an ArrayChannel will require
specification of the processes that must participate in relevant com-
munication events. Each participating process will allocate a buffer
of the same fixed size that will be reused for all communication
tasks.
In distributed computation tasks that depend on data to be re-
ceived as messages from other processes, reuse of the same mes-
sage buffers improves temporal locality. This in turn causes the re-
ceiving of new messages and actions upon message contents to be
more likely to occur in cache and with fewer cache misses.

3.1 Point-to-Point
For point-to-point communication, we provide two commands,
put! and take!, which allows processes to send messages to,
or receive from, a specified process. In code snippet 6, process

3

Proceedings of JuliaCon 1(1), 2019

1 creates an ArrayChannel to facilitate communication between
worker processes. By using a remote call, the programmer may ini-
tiate communication by passing the ArrayChannel as arguments
to an invocation of either put! and take!. ArrayChannel con-
structs associate with different data buffers depending on which
process interacts with the reference.

� �
10 x 10 buffer
AC = ArrayChannel (Float64 , workers (), 10 , 10)

@sync begin
@spawnat 2 begin

fill !(AC , 1 .0)
put !(AC , 3)

end
@spawnat 3 begin

take !(AC , 2)
@assert AC [1,1] = 1 .0

end
end� �
Fig. 6. Message of 10 x 10 matrix of ones sent via point-to-point messag-
ing

put! and take! operations will block until all buffer contents
have been communicated and written at the recipient’s buffer.
ArrayChannels.jl will then simply take the contents of the input
buffer and deposit them in the output buffer at the recipient process,
using the same buffer for each successive communication operation
for improved temporal locality.

3.2 Reduction
All participants in the underlying ArrayChannel must signal their
intent on initiating a reduction by calling reduce! on the remote
channel reference, supplying the reduction operator and ‘root’ pro-
cess which will receive the resultant data. In figure 7, the master
process initialises an ArrayChannel for the worker processes, and
then causes each participating process to signal for a sum reduction
on their local data, directing the result towards process 2. After this
reduction has taken place, only process 2’s data will be modified.
reduce! will block so long as the calling process is still required
to facilitate the reduction under the current topology.

� �
AC = ArrayChannel (Int64 , workers (), 10)
@sync for proc in workers ()

@spawnat proc begin
fill !(AC , 1)
reduce !(+, AC , 2)

end
end
@assert @fetchfrom 2 AC [1,1] == nworkers ()� �

Fig. 7. Sum reduce of vectors residing on five worker processes

We implement the tree topology for reduce!, targetting hierar-
chical network topologies for distributed clusters. The reduce!

function is defined itself in terms of point-to-point communication,
where processes determine their position in the reduction topol-
ogy depending on their process identifier. Since the method is only
intended to alter data residing at the root process, we retain two

buffers in addition to the main ArrayChannel buffer for use in
reduction operations in storing intermediate results.

3.3 Scatter / Gather
The scatter / gather pattern differs from point-to-point communica-
tion and reduction in that all processes, not just those participating
in the ArrayChannel may receive and send messages through this
mode. Within a scatter! operation, a master node will allocate
disjoint regions of its local data for communication with some spec-
ified worker processes. Every invocation of scatter! will block
the caller until the processes have completed receiving the data.
Conversely, a gather! operation causes the master process to wait
for workers to send back regions of array data that match the spec-
ified directions.

� �
X = ArrayChannel (Int64 , [1], 10 , 10)

dim_map = x -> (x-1)*2+1 : x*2
@assert nworkers () == 5

@sync begin
@async begin

scatter !(X, workers (), dim_map)
gather !(X, workers (), dim_map)

end
for proc in workers ()

@spawnat proc begin
Specify who to accept a scatter from
local_data = scatter_accept (X, 1)
local_data [1] = myid ()
gather_back (X, local_data)

end
end

end

Ensure data changes have been enacted
for (i, proc) in enumerate (workers ())

@assert X[1, 2*(proc -1)] == workers ()[i]
end� �

Fig. 8. Both scatter and gather patterns at work

In code snippet 8, the master process initiates both a scatter!

to each of its five worker processes, giving to each process two
columns of a matrix. Each worker will receive its local portion,
and then write into it their process identifier. Finally, the master
process will receive back each worker’s array data, and assert that
the anticipated changes have been made.

4. Results
As a preliminary benchmark, we begin by determining the maxi-
mum obtainable throughput through message passing available in
both Distributed.jl and ArrayChannels.jl, compared to an
OpenMPI 4.0.0 baseline1. Afterwards we assess the performance
of the ArrayChannels.jl communication model on the data par-
allelism benchmarks contained in the Intel PRK. The Intel PRK

1Ping-pong implementations for evalua-
tion are available in the project repository:
https://github.com/rohanmclure/ArrayChannels.jl/tree/master/example.
Reference implementations for MPI are obtained from
https://github.com/ParRes/Kernels/tree/master/MPI1, and built with
default parameters but with -O3 enabled.

4

Proceedings of JuliaCon 1(1), 2019

implementations accomodate arbitrary numbers of cores, and we
obtain results for core counts ranging between one and fourteen.
Results were obtained on a single compute node with two 8-core
Intel Xeon Gold 6134 (@ 3.20GHz) sockets2. Each CPU featured
dual-lane Hyper-Threading and 24.75MB of last-level cache. We
took the average performance reading after evaluating the bench-
marks a number of times for each problem size / core count. Dur-
ing evaluation, each kernel is executed under 1000 iterations with
an additional warm-up iteration. This reduces the impact of runtime
events such as JIT compilation on performance readings to indicate
eventual performance outcomes [1, 3].

4.1 Ping-Pong Results
In figure 9, we provide a profile of the maximum obtainable
throughput that can be achieved for messages of a certain size. The
MPI and Distributed.jl implementations feature a steep drop-
off in throughput for messages greater than 8MB in size, suggesting
that the maximum communication bandwidth has been obtained.
For larger message sizes, both implementations yield deteriorated
performance readings, which gradually improve as message sizes
increase. The communication model presented in OpenMPI con-
sistently outperforms Distributed.jl, with MPI yielding up to
162% increased performance.

Fig. 9. Two-process Ping-Pong performance profile

In spite of ArrayChannels.jl being written using Julia serialisa-
tion constructs, we still see generally improved performance over
Distributed.jl for larger message sizes, due to improved cache
utilisation. The largest difference in performance is attained for
40MB messages, with 150% improvement over Distributed.jl.
For messages below 100kB in size, eager message passing in
Distributed.jl yields improved performance due to the cost of
synchronisation in the rendezvous model outweighing the benefits
of improved access locality. For message sizes up to 16MB, MPI
significantly outperforms ArrayChannels.jl due its highly op-
timised messaging model. Interestingly, ArrayChannels.jl pro-
vides up to 18% improved performance over MPI for message sizes
ranging between 40MB and 4GB, with deteriorating performance
for 8GB messages, while MPI performance continues to increase.

2Results were obtained on Ubuntu 18.04.2 LTS and Julia version 1.1.0. The
MPI implementations were compiled under gcc version 4.7.0 with Open-
MPI 4.0.0.

4.2 Reduce Results
In the distributed reduce kernel, each process is allocated two large
vectors so that a local reduction can be performed. For our testing
purposes, each of these vectors was 8MB in size, providing 16MB
to each process. We selected these problem sizes such that in all
trials with parallel computation, the size of program memory will
exceed last-level cache, and so highlight the effects of access local-
ity.
The reduce kernel’s performance readings depicted in figure 10
demonstrate the effect of parallelisation on overall throughput
(measured in flops per second) of the reduction operation. In MPI,
performance increases steeply with parallelisation only for core
counts above four, with only a slight increase between three and
four cores. The provision of fourteen cores in the case of MPI pro-
vides 91% over the sequential reading, however in both Julia im-
plementations (each targeting the tree topology) provide deterio-
rated performance with the addition of parallelism, with fourteen
cores obtaining 84% (with ArrayChannels.jl) and 46% (with
Distributed.jl) of the sequential performance.

Fig. 10. Weak scaling on Distributed Reduction

MPI implementations are able to target a wide variety of network
topologies in their approach to operations such as reduction, and
may even adopt different behaviour depending on the input size.
By comparison, we implement the Reduce kernel targeting exactly
one topology. In § 4.1, we observe that on a shared-memory en-
vironment such as the testing environment, the MPI implementa-
tion delivers far higher data throughput for 8MB messages than
either communication model in Julia. While the cost of commu-
nication in Julia prohibits speedup due to parallelism on this ker-
nel, this performance degradation is mitigated by improved tem-
poral locality in ArrayChannels.jl. Performance when utilis-
ing ArrayChannels.jl is roughly double that of performance in
Distributed.jl, with improvements between 68% for 7 cores
and 152% for 3 cores.

4.3 Transpose Results
In the distributed transpose kernel, all process operate on separate
portions of a large square matrix. We describe the data distribution
method in § 2.3.3. Each process is allocated 2MB of this matrix,
however will retain a copy of their local portion for computation.
In figure 11, we see that parallel performance under Julia for the
transpose kernel is greatly diminished compared to the sequential
reading and reference C-MPI code. Under Distributed.jl, us-
ing parallelism obtains at most 61% of the sequential performance,

5

Proceedings of JuliaCon 1(1), 2019

with only 50% under ArrayChannels.jl. Distributed.jl ob-
tains typically higher performance than ArrayChannels.jl with
execution under eight cores yielding 24% performance improve-
ment.

Fig. 11. Weak Scaling on Distributed Transpose

As with the reduce kernel, the transpose kernel’s low arithmetic
intensity and large message sizes exacerbate the weaker com-
munication performance in Julia compared to OpenMPI. While
ArrayChannels.jl is able to obtain slightly improved perfor-
mance readings over Distributed.jl for core-counts of two and
ten (4% and 5% respectively), the adopted rendezvous communi-
cation model requires an acknowledgement of the recipient’s readi-
ness to receive prior to communicating any data. Where individual
messages are too large, and when a large number of processes must
be communicated with, this leads to occasions where sender pro-
cesses are idle when they could instead be eagerly sending data.
This leads to degraded performance under ArrayChannels.jl

where processes must enact multiple communication tasks concur-
rently. To ensure that minimal time is spent waiting on recipients
to complete their own communication tasks, processes may instead
elect to wait on all other processes concurrently. However, to ensure
that message buffers are not overwritten requires buffer duplica-
tion, and to facilitate this concurrency requires increased numbers
of context switches.

4.4 Stencil Results
For the stencil kernel, we use the same problem sizes as with trans-
pose, and use a radius two ‘star’ point-wise operator as depicted in
figure 5. As in transpose, processes must allocate a copy of their lo-
cal data for storing intermediate results during each iteration, lead-
ing to an allocation of 4MB per process. In line with the Intel PRK
3 implementation of the stencil kernel, we attempt to distribute the
source matrix into roughly square regions subject to the factoring
of the number of processes.
As depicted in figure 12, all three implementations feature typi-
cally increasing trends in performance with the added parallelism,
with improvements over sequential readings of 11.0×, 4.19× and
6.27× for MPI, Distributed.jl and ArrayChannels.jl re-
spectively. Between the two Julia implementations, we see up
to 71% performance improvement for ArrayChannels.jl over
Distributed.jl with ten cores, with improved readings at each
core count we surveyed.

3Available at https://github.com/ParRes/Kernels/tree/master/MPI1.

Fig. 12. Weak Scaling on Distributed Stencil

In the stencil kernel, messages sizes are small compared to
that of transpose or reduce, and the arithmetic intensity is high.
The ghost regions (matrix regions that must be shared between
processes) have the potential to be stored entirely in last-level
cache, and as such ArrayChannels.jl provides improved per-
formance by reissuing the same storage location when receiving
the contents of these regions at each iteration. Communication in
Distributed.jl will instead generate a new buffer for each in-
coming message, increasing memory latency as the memory region
must be fetched into processor cache prior to use.

5. Conclusion
In this article we presented the ArrayChannels.jl library, pro-
viding in-place communication for array data to the Julia lan-
guage. The library supports a number of parallelism patterns,
such as point-to-point communication, parallel reduction and the
scatter / gather pattern. We evaluated the performance of both
ArrayChannels.jl and Distributed.jl on a number of bench-
marks to demonstrate how improved temporal locality can signifi-
cantly improve the performance scalability of numerical codes.
Our evaluation revealed that while tasks involving large, overlap-
ping communication events may still favour the eager communica-
tion model in ‘Distributed.jl‘, however many realistic computation
efforts perform better when messages are transferred in-place. By
using ‘ArrayChannels.jl‘ constructs improved total throughput ob-
tainable by message passing by up to 150%, and on realistic bench-
marks with up to 71% for the stencil kernel and up to 152% im-
provement on vector reduction.

6. References
[1] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner,

Chris Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Di-
wan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer,
Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovik,
Thomas VanDrunen, Daniel von Dincklage, and Ben Wieder-
mann. Wake up and smell the coffee: Evaluation methodol-
ogy for the 21st century. Commun. ACM, 51(8):83–89, August
2008.

[2] William Gropp. Lecture 24: Buffering and message protocols,
2016.

[3] Prasad A. Kulkarni. Jit compilation policy for modern ma-
chines. In Proceedings of the 2011 ACM International Con-
ference on Object Oriented Programming Systems Languages

6

Proceedings of JuliaCon 1(1), 2019

and Applications, OOPSLA ’11, pages 773–788, New York,
NY, USA, 2011. ACM.

[4] Michael A. McCool, Arch D. Robinson, and James Reinders.
Structured Parallel Programming: Patterns for Efficient Com-
putation. Morgan Kaufman, 2012.

[5] Jeff Squyres. Screencast: Ompi openfabrics protocols, 2008.
[6] R. F. Van der Wijngaart and T. G. Mattson. The parallel re-

search kernels. In 2014 IEEE High Performance Extreme Com-
puting Conference (HPEC), pages 1–6, Sep. 2014.

7

	Introduction
	Background
	Access Locality
	Temporal Locality
	Spatial Locality

	Message Passing Models
	Eager Communication
	Rendezvous Communication

	Evaluation Techniques
	Intel Parallel Research Kernels
	The Reduce Kernel
	The Transpose Kernel
	The Stencil Kernel

	The ArrayChannels.jl Library
	Point-to-Point
	Reduction
	Scatter / Gather

	Results
	Ping-Pong Results
	Reduce Results
	Transpose Results
	Stencil Results

	Conclusion
	References

