
A general-purpose toolbox for efficient Kronecker-based
learning

Michiel Stock1, Tapio Pahikkala2, Antti Airola2, and Bernard De Baets1

1KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
2Department of Future Technologies

ABSTRACT
Pairwise learning is a machine learning paradigm where the goal
is to predict properties of pairs of objects. Applications include
recommender systems, molecular network inference, and ecolog-
ical interaction prediction. Kronecker-based learning systems pro-
vide a simple yet elegant method to learn from such pairs. Using
tricks from linear algebra, these models can be trained, tuned, and
validated on large datasets. Our Julia package Kronecker.jl
aggregates these shortcuts and efficient algorithms using a lazily-
evaluated Kronecker product ‘⊗’, such that it is easy to experiment
with learning algorithms using the Kronecker product.

Keywords
Pairwise learning, Kronecker product, Linear algebra

1. Background
The Kronecker product, denoted by⊗, between an (n×m) matrix
A = [Aij] and an (p× q) matrix B = [Bkl] is computed as

A⊗B =

A1,1B · · · A1,mB
...

. . .
...

An,1B · · · An,mB

 . (1)

Simply put, the Kronecker product creates a new (np ×mq) ma-
trix containing all element-wise products between the respective
elements of the two matrices.
Though conceptually simple, the Kronecker product gives rise to
some elegant mathematics which allows performing many impor-
tant computations, such as the eigenvalue decomposition, determi-
nant or trace, in an efficient way [5, 7]. The Kronecker product
has numerous applications in applied mathematics, for example
in defining the matrix normal distribution, modeling complex net-
works [4] and pairwise learning [6]. The reason that one can use
the Kronecker product in large numerical problems is that (1) often
does not have to be computed explicitly, but it can be circumvented
using various computational shortcuts.

2. Basic use
Our package aims to be a toolkit to effortless build Kronecker-
based applications, where the focus is on the mathematics, and
computational efficiency is taken care of under the hood. Es-
sentially, it provides a lazily-evaluated Kronecker product of a
Kronecker type.

� �
(n, m), (p, q) = (20 , 20), (30 , 30);
A and B do not have to be square
A = rand (n, m); B = randn (p, q);
K = kronecker (A, B) # lazy Kronecker product� �
Alternatively, one can make use of Unicode, i.e. K = A ⊗ B .
The elementary functions of LinearAlgebra are
overloaded to work with the respective subtypes of
GeneralizedKroneckerProduct and provide the most effi-
cient implementation.� �
tr (K) # computed as tr (A) * tr (B)
det (K) # computed as det (A)^ n * det (B)^ q
eigen (K) # kronecker (eigen (A), eigen (B))
inv (K) # yields a Kronecker instance
v = randn (600);
K * v # computed using the vec trick� �
For example, the last line is evaluated using the so-called "vec
trick" [7] with a time complexity of O(nm + pq) instead of
O(nmpq) naively. Similarly, efficiently solving large shifted Kro-
necker systems can be done directly as eigen(A ⊗ B +λI) \ v,
exploiting the fast eigenvalue decomposition for Kronecker prod-
ucts.
Our package fully supports higher-order Kronecker products, e.g.
A ⊗ B ⊗ C. The structure KroneckerPower (for example con-
structed as kronecker(A, 4) forA⊗A⊗A⊗A) and its methods
provide efficient storage and manipulation of repeated Kronecker
multiplications of the same matrix. We also provide the functional-
ity to generate Kronecker graphs.
We provide support for dealing with submatrices of a Kronecker
product through the sampled vec trick [1].� �
subsample a 200 x 100 submatrix of K
i, j = rand (1:n, 200), rand (1:m, 200);
k, l = rand (1:p, 100), rand (1:q, 100);
Ksubset = K[i,j,k,l];
u = randn (100);
Ksubset * u # computed using sampled vec trick� �
3. Prospects
Kronecker.jl is a package in development. The developers are
continuously adding new features. To fully make use of the power
of Julia, we will explore three directions. Firstly, we will integrate

1

Proceedings of JuliaCon 1(1), 2019

libraries for automatic differentiation, such as Zygote.jl [3]. This
will allow for developing pairwise learning methods with complex
loss and regularization functions. Secondly, we want to leverage
the GPU support to make these methods scalable to large datasets
using CuArrays.jl [2]. Finally, we want to explore how symme-
tries and anti-symmetries can be incorporated, for example, when
switching the order of two matrices would not change the result or
only influences the sign of the result.

4. References
[1] Antti Airola and Tapio Pahikkala. Fast Kronecker product

kernel methods via generalized vec trick. IEEE Transactions
on Neural Networks and Learning Systems, 29(8):3374–3387,
2018.

[2] Tim Besard, Christophe Foket, and Bjorn De Sutter. Effec-
tive extensible programming: unleashing Julia on GPUs. IEEE
Transactions on Parallel and Distributed Systems, 30(4):827–
841, 2019.

[3] Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckas,
Elliot Saba, Viral B Shah, and Will Tebbutt. A differentiable
programming system to bridge machine learning and scientific
computing. 2019.

[4] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Chris-
tos Faloutsos, and Zoubin Ghahramani. Kronecker graphs: an
approach to modeling networks. Journal of Machine Learning
Research, 11:985–1042, 2008.

[5] Kathrin Schäcke. On the Kronecker Product. Technical report,
2013.

[6] Michiel Stock, Tapio Pahikkala, Antti Airola, Bernard De
Baets, and Willem Waegeman. A comparative study of pair-
wise learning methods based on kernel ridge regression. Neural
Computation, 30(8):2245–2283, 2018.

[7] Charles F. Van Loan. The ubiquitous Kronecker product. Jour-
nal of Computational and Applied Mathematics, 123(1-2):85–
100, 2000.

2

	Background
	Basic use
	Prospects
	References

