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ABSTRACT

Sorting is a fundamental programming problem with many impor-
tant applications. While there are well-known sorting algorithms
for conventional computers, special techniques are required to take
the most out of real hardware offering features such as cache mem-
ory and instruction-level parallelism. ChipSort.jl is a Julia module
for SIMD and cache-aware sorting. It implements sorting networks
and bitonic merge networks with SIMD instructions, with config-
urable vector sizes. It also implements Combsort, which lends itself
easily to vectorization and can achieve good performance depend-
ing on the memory access cost. Insertion sort is used to finalize.
Large arrays are approached with a multi-way Mergesort. The im-
plementation of ChipSort itself is of interest from a programming
languages perspective due to its use of metaprogramming, more
specifically Julia’s generated functions. This enables custom code
generation for different tasks and hardware at run-time, a feat owed
to Julia. This article presents the implemented techniques as well
as experiments that demonstrate speed gains compared to multiple
standard libraries.
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1. Introduction

Sorting has enjoyed an important place within computer program-
ming topics for a long time. It has great importance to practical
applications, being very useful to organize data for fast retrieval,
and also attracts attention as a theoretically interesting problem in
itself [16]. While sorting is a well-understood problem in general,
with a few classic algorithms available, achieving optimal perfor-
mance for specific problems and architectures may require a careful
algorithm selection rather than a simple parameter tuning [7, Part
I, Introduction].

Many factors can influence the running time of a computer pro-
gram, starting with algorithmic complexity and the base clock
speed of the processor. The performance observed in real comput-
ers has been increasingly depending on processor features that are
not taken into account by the simplest models, though. These fea-
tures include cache memory and parallelism at the processor and
instruction levels. Cache memory has become popular in consumer
processors in the past couple of decades, and as long as mem-
ory access patterns exhibit temporal and spatial locality, it allows
programs to attain a higher performance than would be possible
with a simpler memory architecture [10, Chapter 3]. Writing soft-
ware with better support for parallelism has also become necessary
to utilize the full potential offered by modern and future proces-
sors [31].

One particular form of parallelism that concerns our work is SIMD
(single instruction, multiple data) instructions, where the processor
applies a same operation to multiple independent memory elements
simultaneously. These operations are said to act on vectors, where
each parallel lane carries out the scalar version of the program.
SIMD parallelism is only suitable to specific problems. It may
introduce data access constraints and overheads, and even clock
speed reductions. SIMD performance can be affected negatively by
branching and scattered memory access. It is mostly suited for cal-
culating many replicas of a long arithmetic expression, preferably
with little IO. It can still pay off in appropriate settings and, as will
be demonstrated, sometimes the implementation can be simple too.
More information about SIMD can be found in [4]].

Processors offering SIMD or other forms of instruction-level par-
allelism started to become widely available in the early 2000s. One
example is the introduction of SSE instructions in the x86 archi-
tecture [[17, Chapter 1]. The current availability of processors with
512 bit registers, along with modern GPUs, underscore the demand
for software-building tools that support vector operations. One pro-
gramming language feature relevant to that goal is polymorphism,
allowing programmers to abstract over data types and vectors. An-
other is metaprogramming, the ability of writing programs that ma-
nipulate or generate other programs [1][27, Ch.25]. Metaprogram-
ming enables code generation for complex algorithms customized
to problem parameters and platform resources.

The interest in sorting and the great relevance of cache memory
and parallelism to modern computing eventually led to research on
sorting algorithms that account for these factors, following research
in other topics where SIMD is more clearly beneficial. At the time
SIMD CPUs became widely available there was already a trend
to employ specialized hardware like GPUs for scientific applica-
tions [19} 28]. Although SIMD was used mostly for multimedia
applications at first [5, 25]], some early alternative uses include 3D
graphics [20] and machine learning [26]]. Following earlier work on
parallel sorting in other architectures, the late 2000s saw the first
practical demonstrations of sorting with modern consumer SIMD
chips [13116]. Most of the techniques utilized then are still employed
in more recent works [2,[14].

This article presents ChipSort. j1 [30], a Julia module that imple-
ments SIMD and cache-aware sorting utilizing some of the tech-
niques found in the literature. These include sorting and merging
networks, the use of Combsort with Insertion sort finalization for
medium sized arrays and of multi-way merging for large arrays.
These techniques require not only tuning parameters such as vector
and array sizes, but also generating specific code when implement-
ing different size networks. ChipSort seeks to generate efficient
custom code for each task, relying on Julia metaprogramming ca-
pabilities for that.
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Section [2] ahead presents the techniques employed in ChipSort.
Section [3| presents experimental results assessing the performance
of the module and Section ] brings some concluding remarks.

2. SIMD sorting techniques

ChipSort offers four high-level functions that can be used in ap-
plications as replacements for other sorting functions such as sort
in the Julia standard library. The chipsort! function does not re-
quire any configuration and offers a great performance on a wide
range of cases. The remaining functions are suitable for arrays of
specific size ranges, and require choosing some numeric parame-
ters. The function chipsort_large offers a good overview of all
the techniques implemented in the module, and this section is struc-
tured according to its stages. Some of these techniques may also be
useful in other applications instead of sorting, one clear example
being the in-place matrix transpose.

The way ChipSort works mostly follows [14], except it does not
yet support registers with key and payload and there are no mea-
sures to guarantee a stable sort, such as ensuring unique keys or
performing a post-processing to enforce the original order of col-
liding keys. Another main difference is that ChipSort always em-
ploys Combsort with an Insertion sort finalization.

The function chipsort_large achieves sorting by first split-
ting the input array in chunks that are sorted separately with
chipsort_medium! and then merged simultaneously. This inner
sort is performed in multiple steps:

(1) sorting small blocks of data with a sorting network;
(2) reordering vectors in memory according to a matrix transpose;
(3) vectorized Combsort with a limited number of iterations;

(4) regular insertion sort until the whole data is sorted.

The remainder of this section details the multiple techniques em-
ployed in this process.

2.1 Sorting networks

Sorting networks [[16} Sec. 5.3.4] are graphs composed by compara-
tor modules, units that take two numbers in, and output the smallest
and largest at specific outputs. By properly arranging comparators
we can create a procedure to take an array of elements and output
them in sequence. The design of a sorting network can minimize
the total number of comparisons, or if they can be done in parallel,
minimize the number of steps to complete the process.

A sorting network can be represented by a Knuth graph such as
Figure [T] Each vertical line is a comparator. The graph represents
a network that takes an array of four values (A;, Ay, A3, A4) and
outputs the sorted sequence (51, Sz, Ss, S4).

Ay S
A, S,
As S5
A, S,

Fig. 1. A sorting network for 4 elements. The dashed lines delimit each
step where operations are independent of each other.
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In ChipSort, as in the related work, parallelism is mainly exploited
by carrying out the comparisons of the sorting network over vectors
of size V' contained in SIMD registers, effectively running V' net-
works simultaneously. Other forms of instruction-level parallelism
can also be in play, though. It may be possible to parallelize instruc-
tions such as min and max, or the loading of data into registers. This
is often done implicitly by the microarchitecture, and programmers
can only make sure their code is suitable for this by properly or-
dering operations and avoiding branching, for instance. Part of this
work is expected to be performed by the compiler, and in particular
LLVM in the case of Julia.

ChipSort supports sorting networks of different sizes, currently
only powers of 2, which are predefined as data structures in the
file sorting-network-parameters. j1. The generated function
sort_net|assigns each element of the sequence at each step to a
variable, and the values from the next step are calculated according
to the network specification. The comparisons are performed by the
min and max functions, and the function is generic on the element
types. Figure 2] shows one example of generated code.

4 => (((1,2), (3,4)), ((1,3), (2,4)), ((2,3),))

input_0_1 = input[1]

input_0_2 = input[2]

input_0_3 = input[3]

input_0_4 = input [4]

input_1_1 = min(input_O_1, input_0_2)
input_1_2 = max(input_0O_1, input_0_2)
input_1_3 = min(input_0_3, input_0_4)
input_1_4 = max(input_0_3, input_0_4)
input_2_1 = min(input_1_1, input_1_3)
input_2_3 = max(input_1_1, input_1_3)
input_2_2 = min(input_1_2, input_1_4)
input_2_4 = max(input_1_2, input_1_4)
input_3_1 = input_2_1

input_3_4 = input_2_4

input_3_2 = min(input_2_2, input_2_3)
input_3_3 = max(input_2_2, input_2_3)

return (input_3_1, input_3_2, input_3_3, input_3_4)

Fig. 2. The parameters from a four-element sorting network consisting of
three steps, and the corresponding code generated by sort_net.

This function is a good first example of how ChipSort utilizes Ju-
lia’s metaprogramming features. Multiple implementations of sort-
ing networks are available in the literature [6, [11, 9], however
they implement networks of different sizes straight as code. In
ChipSort they are represented as data structures that guide a gen-
erated function to produce equivalent code. While this data struc-
ture is currently hard-coded, it could be potentially produced only
when necessary by an algorithm such as Bose-Nelson, what re-
mains a future plan for the module.

The sort_net generated function expects elements to which max
and min are defined. It can be called with simple data types, e.g.
sort_net (4,2,5,3) works. In practice ChipSort often calls this
function with vectors, completely relying on SIMD. j1 [24]. This
module maps a vector in Julia similar to tuples or static arrays
straight to LLVM vector types, ensuring SIMD code can be pro-
duced when possible and also allowing the flexibility of handling
logic vectors that are larger than the actual registers, or spilling data
to the stack if all registers are occupied.


https://github.com/nlw0/chipsort.jl/blob/d2d049b7413f0073476021fa62fb748803130768/src/sorting-network-parameters.jl
https://github.com/nlw0/chipsort.jl/blob/d2d049b7413f0073476021fa62fb748803130768/src/sorting-networks.jl#L13
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2.2 SIMD vectors transpose

Consider a group of stacked SIMD vectors. Each column in this
representation is termed a lane. The result from sort_net with
vectors is that each lane contains a sorted sequence. This data
must be transposed to produce sorted vectors. This is done in
ChipSort through transpose_vecs, which is a generated func-
tion that supports rectangular matrices, but with dimensions con-
strained to powers of 2. The generated code consists mostly of calls
to SIMD. shufflevec. This is another instance of an operation that
other projects [2, 9] implement with multiple low-level functions
contemplating each different case, while in ChipSort there is only
a single Julia generated function that produces equivalent code.
Figure [3] displays an example of 16 random integers loaded into
SIMD registers as 4 vectors. After sort_net each lane contains a
sorted sequence, and transpose_vecs turns the lanes into vectors
(registers). The chipsort_small! function is essentially a sorting
network followed by a transpose and a merge procedure.

x[18]26]83]17] x[16]26]16[17] x[16]18][94]95]
x[16]54]27]51] x[18]54]20[41] x[26]54[86]91]
x[95[86]20]93] x[94]86]27[51] x[16]20[27]83]
x[94]91]16[41] x[95]91]83[93] x[17]41]51]93]

input sort_net transpose_vecs

Fig. 3. Four vectors with four values, the result from a vectorized four-
elements sorting network, and the transpose.

2.3 Bitonic Merge Networks

A bitonic sequence starts either increasing or decreasing and con-
tains at most one change of direction. Bitonic merge networks al-
low the creation of merge networks of different sizes, and they are
again implemented in ChipSort with a single generated function,
bitonic_mergel Merging two sorted vectors requires first revers-
ing one of them, and the result is stored in two vectors containing
the first and second halves of the complete sorted sequence.

Apart from the use in sorting small sequences and in the multi-way
merge tree, bitonic merge networks can also be used to implement
a regular merge sort. This technique was investigated in ChipSort
only superficially, and while there were no promising results in
terms of performance, ChipSort also contains the generated func-
tion bitonic_merge_interleaved to illustrate how metapro-
gramming can help implement multiple simultaneous merges with
interleaved execution, as done in other projects [6].

2.4 Vectorized Combsort

One of the most peculiar aspects of ChipSort, taken directly from
AA-sort [13][14], is the use of the Combsort algorithm. Combsort
essentially generalizes Bubble sort in the same way that Shell sort
generalizes Insertion sort [12) (8| [18| 16, [7]. The array is swept
multiple times, ordering pairs of values at a given distance from
each other. The distance is reduced each time by %. Parallelism is
achieved either by parallelizing the operations from a single array
or by processing independent arrays of the same size.

ChipSort contains two functions that utilize Combsort, employing
these two distinct forms of parallelism. The first is chipsort!, a
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serial implementation of the algorithm which is vectorized implic-
itly by the optimizing compiler. chipsort! starts with Combsort
until the interval size is 1, when it switches to Insertion sort.

The other function is chipsort_medium!, an explicitly vectorized
implementation utilizing SIMD. j1. This second function also per-
forms a number of operations before and after Combsort. It consists
of the following steps:

(1) Apply a sorting network on K blocks of J vectors of size V.
(2) Vectorized Combsort until the interval size is 1.
(3) Transpose blocks.

(4) Transpose data in-place from K blocks of J vectors into J
blocks of K vectors.

(5) Vectorized Combsort again.
(6) Sort blocks again.

(7) Insertion sort.

After the first two steps the result is essentially a matrix where the
K x J columns are the vectors, and each of the V' rows contains an
approximately sorted sequence. The transpose steps reshape each
row into a new block. Each row is processed independently at first,
and the transpose allows elements from distinct groups to interact.
The last step is necessary to ensure the whole array is sorted, not
viewed anymore as a matrix with independent rows.

In both implementations switching to Insertion sort presents a bet-
ter performance than sticking to Combsort until the end. Once the
interval becomes 1 Combsort essentially becomes Bubble sort, thus
finding an alternative seems beneficial. Insertion sort should fare
well because the array is now approximately sorted, and any out-
of-order elements should be already close to their destinations.
Finishing a sorting method with Insertion sort is a common prac-
tice, present at least in Musser’s Introsort [21]. This is also akin to
the classic method used in the Julia standard library, switching to
Insertion sort when the array becomes too small. The difference is
that Combsort is not a divide-and-conquer approach, and therefore
Insertion sort must be applied once on the whole array.

The utilization of Insertion sort as a final stage to Combsort has
been considered before [23} [12], and Insertion sort was even em-
ployed by [14] for dealing with partial keys. The main contribution
of the present work may be to extend AA-sort [13 [14] by giving
a larger role to Insertion sort and also relying more on automatic
vectorization by the compiler.

2.5 In-place matrix transpose

In-place matrix transposition can be attained by moving a number
to its destination, then moving away the number that was found
there, and so on, until a cycle is completed and a new number is
selected to be moved [32]]. While carrying out this procedure is
simple, it is not trivial to find out what are the cycles to transpose
a matrix of any given dimensions, and even finding out the number
of cycles turns out to be a difficult problem [15 1.3.3-12].
ChipSort contains the generated function transpose ! to perform
in-place matrix transposition. The cycle seeds are computed at the
time of code generation, and at run-time the function only moves
the data, computing the index sequences and detecting when each
cycle finishes. Therefore even though the function is completely
generic, supporting any shape, the most complex part of the prob-
lem is tackled programmatically during code generation, resulting
in a very simple run-time code.


https://github.com/nlw0/ChipSort.jl/blob/10eb1a962e720aee2bf8733c832468b51a782c1a/src/bitonic-merge-network.jl#L12
https://github.com/nlw0/ChipSort.jl/blob/10eb1a962e720aee2bf8733c832468b51a782c1a/src/transpose-vecs.jl#L19
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2.6 Vectorized multi-way merging

Merging multiple arrays simultaneously requires the creation of a
merge tree to keep some intermediate data. Each node in this tree
is essentially an iterator traversing the merger of two arrays in the
lower level. To employ the vectorized bitonic merge network in this
process it is necessary to keep a whole vector at each node of the
tree. To produce the next vector of elements one of the two source
arrays is selected according to their smallest next element, and a
whole vector is pulled from that array. This vector is merged with
the intermediate one, and the first half of the resulting sequence can
be taken to the next level of the tree, while the second half is kept
as the new intermediate data.

Given a set of sorted arrays, once the tree is initialized data is taken
from it one vector at a time, producing the final sorted sequence.
Each time a new vector is requested the tree is traversed following
the smallest element among the node children, until one of the in-
put arrays is reached. The data from the array is then loaded from
memory and merged with the intermediate data, producing new up-
dates moving through the tree until the root is reached.

The intermediate data from the tree is kept by ChipSort in a con-
tiguous array, treated as a heap. Assuming 1-based indexing, each
node ancestor can be simply found by the Euclidean division of its
index by 2. This data is assumed to fit some level of cache memory
during operation, as in the related work [[13} 16} 114].

3. Experiments

This section reports experiments with the ChipSort methods, as
well as alternative ones. The term method can be understood as both
the algorithms and their implementations in the Julia language. The
specific methods tested were:

—<chipsort! Combsort finishing with Insertion sort, written as a
serial program and vectorized by the compiler.

——chipsort_small! in-register, based on sorting networks.

—chipsort_medium! vectorized Combsort, plus additional steps,
finishing with Insertion sort.

—chipsort_large merge-sort with a multi-way merge tree, start-
ing from chunks processed by chipsort_medium!.

—insertion_sort! Insertion sort taken from the Julia library.

—sort! the Julia standard sort, Quicksort finishing with Insertion
sort for small arrays (20 elements).

The ! implies in-place operation. The allocation time for
chipsort_large was not discounted in our analyses.

While our experiments focused on 32-bit integer values, similar
results were observed with other types, although with possibly
smaller speedups with 64-bits. Further details are omitted for the
sake of brevity. For floating-point numbers, while in theory every
method should perform comparably to integers, issues can appear
in practice due to peculiarities such as NaNs. This interferes with
the ability of the compiler to optimize chipsort!, although the
other methods with explicit vectorization are less affected. There is
ongoing work in Julia and LLVM to improve the performance of
floating-point comparisons [22, 129, |3].

3.1 Small arrays

In our first experiment we evaluate the sorting of small arrays, with
64 32-bit values. The chipsort_small! method based on sorting
and bitonic merge networks was compared to serial Insertion sort,
the Julia sort and chipsort!. The short running time makes it chal-
lenging to perform proper measurements, therefore the task was to
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sort 128 sequences of 64 contiguous values in memory, forming a
single block of 2! uniform random entries. Sorting was performed
in-place, in a for-loop. The results are in Table[T]

Table 1. Sorting 128 x 64 UInt32 elements.

Method Median time
chipsort_small! 57.206 us
chipsort! 133.510 us
Insertion sort 194.679 us
Julia standard 222910 us

The chipsort_small function achieved a significant acceleration
of over 3 times relative to Insertion sort or the Julia standard func-
tion, and twice over chipsort!. Even though the in-register func-
tion was clearly faster, this first experiment already demonstrates
the potential of chipsort!, which presented a speedup of at least
46% compared to the other alternatives.

3.2 Medium and large arrays

Our second experiment compared many different methods on in-
puts of exponentially increasing sizes, from 2° to 22°. Figure [4]
displays the resulting measurements. Although the curves look
too concentrated in this visualization, it is possible to notice that
chipsort! consistently outperforms the Julia standard library by
a factor of 80% to 100%, or up to twice as fast. We can also observe
that Insertion sort soon becomes too inefficient.

Running time of sorting methods

107 {=@~ Chipsort
-0~ Juliastd
=@~ ChipSort-M
-@- ChipSort-L
-0~ InsertionSort
--= nlog(n)

64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
Input size [n]

Fig. 4. Running time of the different sorting methods studied.

Figure [5] shows a different visualization from the same data with
the time divided by the input size. The vertical dotted lines indi-
cate the size of each cache level. Here we can see more clearly
how chipsort_medium! and chipsort_large slightly outper-
form chipsort! in a few cases.

Figure [6] displays the measured times for 2'% and 2'® elements.
All the tested ChipSort methods surpass the Julia standard li-
brary in these cases. In the 213 case chipsort_medium! exhibits
a slight speedup of 7.3% over chipsort!, and on the 22 case it is
chipsort_large! with 4.4%.


https://github.com/JuliaLang/julia/blob/de3401908a506727ed70b3e953bd721ab4d66109/base/sort.jl#L461
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Performance of sorting methods relative to input size
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S gt

Time / input size [1E8 X s/n]

64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
Input size [n]

Fig. 5. Curves displaying the relative running time from each studied
method. The ordinate represents the median of the measured running times
divided by the input size at each test. Lower is faster.

3.3 Other platforms

One last experiment was carried out with different programming
languages in the same machine and with Julia in different ma-
chines, to provide more context. Table [2] displays statistics col-
lected from Julia, Python and C++ programs. The experiment
was performed with a Ubuntu 18.04 system using Julia 1.3.0-
DEV.431, Python 3.6.8 with Numpy 1.14.3 and GCC 8.3.0 with
-03 -march=native and libstdc++ 6.0.25. For the case of Python
the measurements obtained by calling the function through Py-
Call were better than using the native Python shell, therefore the
best value was kept. Results obtained for C++ with Julia inter-
operation using Cxx. j1 were slightly worse than native, thus dis-
carded. Numpy, C++ sort and Julia all presented similar perfor-
mance, unmatched by C++ gsort. These methods make little to no
use of SIMD, enabling ChipSort to surpass them.

Table 2. Sorting arrays of 8k and 1M UInt32
elements in different software platforms.

Method 8k IM
ChipSort 172.35 ps 35.28 ms
Julia standard 337.03 ps 68.39 ms
Numpy via PyCall 354.55 us 70.01 ms
C++ std::sort 374.20 ps 68.10 ms
C++std: :gsort 589.52 us 108.2 ms

Table 3] contains the results for chipsort! and the Julia standard
sort! on an Intel processor with AVX512 instructions, and an
ARM processor with 128-bit NEON instructions. No change in per-

Table 3. Sorting arrays of 8k and 1M UInt32 elements in
different hardware platforms.

Chip Method 8k IM
AXV512 ChipSort 177.4 ps 35.20 ms
AXV512 Julia standard 347.5 ps 69.07 ms
NEON ChipSort 350.9 s 73.36 ms
NEON Julia standard 573.2 ps 113.68 ms

formance can be seen on the AVX512 machine, and on the ARM
machine the speedup was smaller than before: only 60%. The most
notable fact in this experiment is that the same high-level and se-
rial code successfully produced a vectorized sort on machines with
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different vector sizes and even instruction sets, always with a ben-
eficial outcome.

4. Conclusion

We have presented ChipSort, a Julia module for SIMD and cache-
aware sorting. The main sorting method utilized in ChipSort is
Combsort finalized with Insertion sort. This method is based on
previous proposals for SIMD sorting [13| [14] and other practical
sorting methods [12}21]. This method was implemented as a serial
program vectorized by the Julia compiler and LLVM, resulting in
a sorting function up to twice as fast as the Julia standard library
sort. This performance holds for at least a million 32-bit integers in
a personal computer.

Other techniques available in ChipSort are sorting networks,
bitonic merge networks, in-place matrix transpose and a multi-way
merge tree. Vectorized in-register sorting, although limited to small
powers of 2, proved to deliver speedups of up to 3 times relative to
the standard library.

Results were limited for the method dedicated to large arrays,
only narrowly surpassing the main ChipSort method in few cases.
Merge-based techniques may be more advantageous when sorting
large records, though.

While the main ChipSort method relies on compiler optimiza-
tions, other methods utilize explicit vectorization trough SIMD. j1.
ChipSort makes extensive use of metaprogramming, more specif-
ically Julia generated functions. This allows functions like sorting
networks to be implemented in an abstract and generic way. The
networks are represented as data structures, used by a higher-level
program to assemble the final network code. This contrasts with
other libraries where different networks are implemented straight
as final functions. Julia also has the opportunity to perform custom
optimizations since ChipSort is implemented in pure Julia with
abstract methods that can be specialized.

It is a testament to the quality of the Julia compiler infrastruc-
ture that the most successful method implemented in ChipSort
has no explicit vectorization or intrinsics. It is just a simple, scalar
implementation of Combsort that is optimized by the compiler
to generate code adapted to different problem settings and to the
hardware architecture at run-time. And in the cases where explicit
vectorization is necessary Julia still offers a suitable framework
that allowed ChipSort to implement sophisticated techniques with
concise code. This project can illustrate how well Julia imple-
ments traditional language features such as parametric types, and
its metaprogramming features make it stand out from other lan-
guages even more.

Some future prospects for ChipSort are to implement missing fea-
tures such as buffers in the merge tree and stable sorting of key-
payload data; explore the limits of in-register processing in modern
512-bit architectures an eventually GPUs; explore how to interact
with the compiler in order to optimize code for complex tasks such
as multi-stage multi-threaded merge-sorting of large arrays.
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